Toward a more complete understanding of the association between a hepatitis C sustained viral response and cause-specific outcomes

Innes, Hamish A.; McDonald, Scott A.; Dillon, John F.; Allen, Samuel; Hayes, Peter C.; Goldberg, David; Mills, Peter R.; Barclay, Stephen T.; Wilks, David; Valerio, Heather; Fox, Ray; Battacharyya, Diptendu; Kennedy, Nicholas; Morris, Judith; Fraser, Andrew; Stanley, Adrian J.; Bramley, Peter; Hutchinson, Sharon J.

Published in:
Hepatology

DOI:
10.1002/hep.27766

Publication date:
2015

Document Version
Peer reviewed version

Citation for published version (Harvard):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy for details of how to contact us.
TITLE: Towards a more complete understanding of the association between a hepatitis C sustained viral response and cause-specific outcomes.

AUTHORS AND AFFILIATIONS: Hamish A Innes1,2, Scott A McDonald1,2; John F Dillon3, Sam Allen4, Peter C Hayes5, David Goldberg1,2, Peter R Mills6, Stephen T Barclay7, David Wilks8, Heather Valerio1,2, Ray Fox9, Diptendu Bhattacharyya10, Nicholas Kennedy11, Judith Morris12, Andrew Fraser13, Adrian J Stanley7, Peter Bramley14, and Sharon J Hutchinson1,2

1) School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
2) Health Protection Scotland, Glasgow, UK
3) Ninewells Hospital and Medical School, Dundee, UK
4) University Hospital, Crosshouse, UK
5) Royal Infirmary Edinburgh, Edinburgh, UK
6) Gartnavel General Hospital, Glasgow, UK
7) Glasgow Royal Infirmary, Glasgow, UK.
8) Western General Hospital, Edinburgh, UK
9) The Brownlee Centre, Glasgow, UK
10) Kirkcaldy Hospital, Fife, UK
11) Monklands Hospital, Lanarkshire, UK
12) Southern General Hospital, Glasgow, UK
13) Aberdeen Royal Infirmary, Aberdeen, UK
14) Stirling Royal Infirmary, Stirling, UK

ABBREVIATIONS: HCV, hepatitis C virus; SVR, sustained viral response; US, united states; RNA, ribonucleic acid; SLM, severe liver morbidity; HIV, human immunodeficiency virus; SMR, Scottish morbidity records; CHI, community health index; ICD, international classification of disease; PCR, polymerase chain reaction; CCI, charlson comorbidity index; APRI, aspartate aminotransferase-to-platelet ratio index; GGT, gamma glutamyl transferase; ARR, absolute risk reduction; FAHR, fully
adjusted hazard ratio; CI, confidence interval; AIDs, acquired immunodeficiency syndrome; N.B, nota bene

WORD COUNT: 5,008 (including introduction, methods, results, discussion and references)

CONFLICTS OF INTEREST:

(1) HAI reports personal fees from Janssen outside the submitted work; (2) SAM reports nil; (3) JFD reports grants and personal fees from Roche, grants and personal fees from MSD, grants and personal fees from Janssen, grants and personal fees from Gilead, personal fees from BMS, grants from GSK, grants and personal fees from Abbvie, outside the submitted work; (4) SA reports nil; (5) PCH has received personal support from Roche, Janssen, MSD and Gilead. (6) DG reports personal fees from MSD, Janssen, Abbvie, BMS & Gilead, outside the submitted work; (7) PM reports nil (8) STB reports speaker fees from Gilead, Janssen, MSD and Roche. Advisory board fees from Abbvie, BMS, Gilead, Janssen and MSD. Travel grants from Gilead, Janssen, MSD and Roche. (9) DW reports nil; (10) HV reports personal fees from Janssen outside the submitted work; (11) RF reports receiving advisory board or speaker’s fees from Janssen, Gilead, BMS, Merck and Abbvie; (12) DB reports nil; (13) NK reports advisory fees from Gilead; (14) JM reports nil; (15) AF reports nil; (16) AJS reports nil; (17) PB reports grants and personal fees from MSD, grants and personal fees from Janssen, grants and personal fees from Gilead, outside the submitted work; (18) SH reports personal fees from Abbvie, Gilead, Janssen, MSD, Roche, and grants from Janssen, outside the submitted work.
ABSTRACT:
The sustained viral response (SVR) is the optimal outcome of hepatitis C therapy, yet more detailed data is required to confirm its clinical value. Individuals receiving treatment in 1996-2011 were identified using the Scottish HCV clinical database. We sourced data on ten clinical events: liver, non-liver and all-cause mortality; and first hospitalisation for severe liver morbidity (SLM), cardiovascular disease, respiratory disorders, neoplasms, alcohol-intoxication, drug-intoxication and violence-related injury (N.B. the latter three events were selected \textit{a priori} to gauge on-going chaotic lifestyle behaviours). We determined the association between SVR attainment and each outcome event, in terms of the relative hazard reduction and absolute risk reduction (ARR). We tested for an interaction between SVR and liver disease severity (mild vs. non-mild), defining mild disease as an aspartate aminotransferase-to-platelet ratio index (APRI) <0.7. Our cohort comprised 3385 patients (mean age: 41.6 years), followed-up for a median 5.3 years (IQR 3.3-8.2). SVR was associated with a reduced risk of liver mortality (adjusted hazard ratio [AHR]:0.24, \(P<0.001 \)), non-liver mortality (AHR:0.68,\(P=0.026 \)); all-cause mortality (AHR:0.49, \(P<0.001 \)), SLM (AHR:0.21,\(P<0.001 \)), cardiovascular disease (AHR:0.70,\(P=0.001 \)); alcohol intoxication (AHR: 0.52,\(P=0.003 \)) and violence-related injury (AHR:0.51,\(P=0.002 \)) After 7.5 years, SVR was associated with significant ARRs for liver mortality, all-cause mortality. SLM and cardiovascular disease; each 3.0%-4.7%. However, we detected a strong interaction; in that ARRs were considerably higher for individuals with non-mild disease, than for individuals with mild disease. \textit{CONCLUSIONS}: The conclusions are three-fold: 1) Overall, SVR is associated with reduced hazard for a range of hepatic and non-hepatic events. 2) An association between SVR and behavioural events is consistent with SVR patients leading healthier lives, 3) The short-term value of SVR is greatest for those with non-mild disease.

KEYWORDS: Chronic hepatitis C; Prognosis; Negative control; Hawthorne effect; Teachable moment
INTRODUCTION:

Chronic infection with the Hepatitis C Virus (HCV) can lead to fatal liver disease [1]. The virus can be permanently eradicated through a course of treatment, and the sustained viral response (SVR) is used as a near-term proxy for this outcome [2]. However, the primary goal of therapy is not to attain SVR per se, but to appreciably improve the patient’s prognosis vis-à-vis overt liver disease and putative extrahepatic sequelae [2,3]. In this sense, SVR is a surrogate endpoint, not a clinical one [4]. Accordingly, the treatment case rests on this surrogate being of sufficient clinical value to the individual. Observational studies so far have found that SVR is independently associated with a reduced risk of: liver failure and liver mortality [5]; non liver mortality [6]; all-cause mortality [5, 7]; cardiovascular disease [8]; type II diabetes [9, 10]; and renal disease [8]. This is encouraging, but we must continue to develop our understanding of these associations; not least to justify high treatment costs [11] and significant adverse effects with some regimens. Herein we revisit a previous analysis [12], this time with a larger nationwide post-treatment cohort attached to detailed cause-specific mortality and hospitalisation data. Our broad objective was to describe the association between SVR and a diverse range of clinical events. In the course of doing so, we offer three advancements to previous work. Firstly, we assess the absolute risk reduction (ARR) associated with SVR, recognising that ARR gives the most clinically relevant picture vis-à-vis the value of a medical intervention [13, 14]. Secondly, we examine whether SVR is associated with events that reflect chaotic lifestyle behaviours (in addition to events that reflect the biological sequelae of viral pathogenesis). Finally, we report the evidence for an interaction in the SVR effect according to mild versus non-mild liver fibrosis.
METHODS:

TREATMENT COHORT: INCLUSION AND EXCLUSION CRITERIA
The Scottish Hepatitis C Clinical Database consists of standalone Microsoft Access databases installed across the majority of Scottish HCV treatment sites (at present, installed in 16 out of a possible 18 centres). These databases hold information on all aspects of HCV care and patient management, and on an annual basis, are amalgamated into a single aggregate dataset. The inclusion criterion for this study was commencement of a course of antiviral therapy after 1 January 1996 (i.e. since the universal availability of HCV RNA testing in Scotland), and a termination date prior to 31 December 2011. After applying appropriate exclusion criteria (see eFig.1), the final cohort considered in our analyses comprised 3,385 treatment patients.

LINKAGE TO MORTALITY AND HOSPITALISATION DATA:
Scotland holds a national database for: (i) all general and acute inpatient/day case hospital admissions (SMR-01 database); (ii) all mental health inpatient/day case admissions (SMR-04 database); and (iii) all deaths[11]. We electronically linked patients in our HCV treatment cohort to extracts from these three databases (all three extracts were complete to 31 Dec 2013). This linkage involved a two-step process: First, patient-identifiers held on the clinical database (forename initial, gender, surname soundex, date-of-birth and post-code sector) were probabilistically matched to an individual on the Scottish Community Health Index (CHI) database. The CHI database allocates, to every individual registered with a general practitioner in Scotland, a unique number (the “CHI number”) [15]. Essentially, this CHI number functions as a “master index”. Hence in the second step, knowledge of each individuals CHI number, enables the corresponding hospitalisation and mortality records to be retrieved. This linkage was approved by the National Services Scotland Privacy Advisory Committee.

OUTCOME EVENTS EXAMINED:
We used Scotland-wide hospitalisation and mortality data, obtained through electronic record linkage, to define ten outcome events. Each event was determined through the International Classification of
Disease (ICD) code recorded in the principal position of the cause of death/discharge diagnosis (eTable.1). The ten events considered can be subdivided into three classes; as follows.

1. LIVER-RELATED EVENTS
HCV infection has a well-established deleterious impact on liver functioning [1]. Thus, our primary outcome events of interest were liver mortality, and hospitalisation for Severe Liver Morbidity (SLM); the latter was defined as decompensated liver cirrhosis or hepatocellular carcinoma.

2. PUTATIVE EXTRAHEPATIC MANIFESTATIONS OF INFECTION
HCV infection may impact systemic health. Thus, in line with a previous analysis by Lee and colleagues [16], we expanded our list of outcome events to include hospitalisation for cardiovascular disease; respiratory disorders; and neoplasms (excluding liver cancer). In addition, we further obtained data on non-liver, and all-cause mortality.

2. NEGATIVE CONTROL EVENTS
We defined a negative control, as an outcome viral persistence is unlikely to cause through cellular pathogenesis, and hence be statistically associated with, given complete adjustment for confounding. We selected three negative controls a priori. These were: hospitalisation for an acute instance of drug intoxication, hospitalisation for an acute instance of alcohol intoxication, and lastly, hospitalisation for injury incurred through violence (violence-related admissions are commonly alcohol-related [17, 18]). Our assertion is that these outcome events, collectively, function as a barometer of extreme lifestyle exposures.

PRIMARY EXPOSURE VARIABLE:
The primary exposure variable in this study was SVR attainment, defined as remaining PCR negative for viral RNA for at least six months after terminating therapy. Patients with a PCR positive test 0-6 months after treatment, or without a PCR test six months after treatment, were classified as non-SVR. Data entry staff input SVR status onto the clinical database through applying these definitions to routinely performed PCR test data.
STATISTICAL ANALYSES:

A survival analysis approach underpins our methodology throughout. For each individual, follow-up began nine months after the end date of the first treatment episode (the nine months thereby factors in six months for SVR eligibility and a three month grace period for the patient to receive their PCR test). Follow-up ceased at the date of the first instance of the specified outcome (if that occurred at all), or at the censoring date. We censored follow-up at the earliest date of either: (i) mortality, (ii) re-treatment for initially non-SVR persons, but only if that re-treatment episode resulted in SVR by 1 April 2013 (the date the clinical database was complete until), or (iii) 31 Dec 2013 (i.e. the date hospitalisation and mortality data were complete until). As a preliminary step, we generated cumulative incidence and Kaplan Meier curves for each study outcome (eFig.2-5). Thereafter, our analysis takes the form of three strands; each examining the clinical benefit of SVR attainment from a distinct angle.

ANALYSIS 1: HAZARD REDUCTION ASSOCIATED WITH SVR

Taking the time to the first instance of each outcome event as our dependent variable, we used Cox regression to determine the cause-specific hazard reduction for SVR versus non-SVR attainment. We then assessed the extent to which this reduction attenuates following adjustment for a range of covariates. The covariates we controlled for were subdivided into six categories, as follows:

i. Basic demographics (age group and gender).
ii. Medical comorbidities (diagnosis of liver cirrhosis, and charlson comorbidity index)
iii. Viral factors (viral genotype only)
iv. Behavioural factors (ever intravenous drug use; maximum alcohol consumption sustained for at least six months; and past hospitalisation for alcohol intoxication, drug intoxication or violence-related injury)
v. Liver Function Tests (aspartate aminotransferase-to-platelet ratio index, and gamma glutamyl transferase)
vi. Full adjustment (all covariates within categories i-v).
Liver cirrhosis is typically diagnosed through a combination of liver biopsy, transient liver elastography, abdominal ultrasound, clinical examination and routine liver-function tests. Maximum alcohol consumption was defined as the self-reported highest amount of alcohol consumed, for a sustained period of time (at least six months), prior to first appointment at a specialist liver clinic. The occurrence of a past hospital episode for acute drug intoxication, alcohol intoxication and violence-related injury was determined through historical hospitalisation data dating back to 1 January 1980. We calculated the Charlson Comorbidity Index (CCI) to gauge each patient’s comorbidity burden at baseline [19]. The CCI assigns a score of 1-6 for each comorbidity present, with a higher score denoting greater severity: a metastatic solid tumour, for example, carries a score of six; renal disease carries a score of two; whilst uncomplicated diabetes incurs a score of one. The final CCI for an individual is the total of these scores. We used historical hospitalisation data dating back to 1 January 1980 to determine the presence/absence of the various comorbidities at baseline (as per the ICD codes set out by Quan et al [20]). We extracted all liver function tests recorded on the clinical database within two years of starting treatment. We calculated the mean aspartate aminotransferase level and mean platelet count in order to infer the aminotransferase-to-platelet ratio index (APRI). We used a cut-off point of 0.7 to distinguish mild fibrosis (i.e. Metavir F0-F1) from moderate/severe fibrosis (i.e. F2-F4) [21]. We also determined the mean level of gamma glutamyl transferase (GGT), as this was previously found to be an important determinant of SVR attainment in Scotland [22]. Cox regression assumes proportional hazards; we verified this assumption graphically and through the Schoenfeld residual test. In analysis-1, we calculated the cause-specific hazard ratio, which is the appropriate measure to inform whether SVR is an etiological determinant of the outcome event in question. Yet, because it does not consider competing mortality risks, it may not provide the best indication on whether the said outcome will actually occur by a given time point[23], – we address this perspective in analysis-2.

ANALYSIS 2: ABSOLUTE RISK REDUCTION ASSOCIATED WITH SVR

We determined the absolute risk reduction (ARR) associated with SVR attainment, using the time to the first instance of each outcome event. Because mortality, which may differ between SVR and non-
SVR groups, can have a bearing on an individual’s risk of experiencing the event in question, we treated death as a competing event in our base case ARR calculations (however, we also performed a sensitivity analysis where these competing risks were ignored). Cumulative incidence functions stratified by SVR status provide a visual representation of ARR (see eFig.2-3); but these curves are not corrected for dissimilarity in potential confounders (i.e. age, CCI etc) between the SVR and non-SVR groups. We determined the adjusted association between SVR and ARR by generating pseudo-values of the cumulative incidence function and modelling these values directly in a generalised linear model with a Gaussian link [24, 25]. We assessed three time points; 2.5, 5.0 and 7.5 years. Adjustment was based on the same range of covariates described in analysis-1. Finally, in this analysis, we only considered outcome events that HCV infection can plausibly cause via cellular pathogenesis (hence, we did not compute ARRs for negative control events).

ANALYSIS 3: INTERACTION ACCORDING TO MILD VS NON-MILD LIVER DISEASE

The Scottish clinical database records data on liver function tests performed during clinical follow-up. However, these data can be incomplete; principally because tests are numerous, and entered onto the database manually. Accordingly, a pre-treatment APRI score was available for only 62% of our cohort (see table.1), even though we expect an AST and platelet count to have been performed for the vast majority. Given that a complete case-analysis can introduce bias and reduce statistical power [26], we imputed plausible values where APRI was unknown using the multiple imputation method [26, 27]. Each missing APRI score was replaced with a set of plausible values reflecting the uncertainty over the right value to impute. We generated 25 imputed APRI scores (categorised as <0.7 Vs. ≥0.7) for each missing value using a logit model incorporating all factors outlined in eTable3 as independent variables. We used these imputed data to gauge whether the association between SVR and each outcome event differs according to mild fibrosis (as indicated by APRI <0.7) versus moderate/advanced fibrosis (APRI≥0.7). Thus analysis-1 was supplemented by adding an SVR*APRI interaction term to each fully adjusted cox-regression model. Similarly, analysis-2 was supplemented by adding an SVR*APRI interaction term to each fully adjusted generalised linear model.
RESULTS:

DESCRIPTION OF COHORT:
The cohort was male dominated (70.2% of male gender) and relatively young (41.6 years; SD: 9.6). Liver cirrhosis had been diagnosed in a minority of 8.4% (Table 1). Most persons were known to have acquired infection through intravenous drug use (57.8%). A history of alcohol abuse (defined as a history of drinking >= 50 units/week for a sustained period) was self-reported in 20.2%, and a similar proportion had been hospitalised in the past for a violence-related injury (18.4%). SVR was initially attained in 53.9%, and 7.3% of initial non-SVRs, later attained SVR in re-treatment by April 2013. APRI score was missing in 38.0% of individuals. Where this score was known, 51.8% had a value <0.7. The median follow-up per patient was 5.3 years (IQR: 3.3-8.2). The number of outcome events observed ranged from 102 (liver mortality) to 404 (hospitalisation for cardiovascular disease); see eTable 3.

ANALYSIS-1: HAZARD REDUCTION ASSOCIATED WITH SVR
The largest cause-specific hazard reductions were seen with regard to hepatic events (Table 2). For liver mortality and SLM, the fully adjusted hazard ratio (FAHR) was 0.24 (95% CI: 0.14-0.42, P<0.001) and 0.21 (95% CI: 0.13-0.35, P<0.001), respectively. SVR was also associated with non-hepatic events, notably with regard to non liver mortality (FAHR: 0.68; 95% CI: 0.49-0.95, P=0.026), and cardiovascular disease (FAHR: 0.70; 95% CI: 0.57-0.87, P=0.001). No association was seen for respiratory disorders and neoplasms (P=0.61 and 0.92, respectively). SVR was associated with two of the three negative control outcomes tested; SVR patients exhibited a 49% hazard reduction for violence-related injury (FAHR: 0.51, 95% CI: 0.33-0.78), and a 48% hazard reduction for alcohol intoxication (FAHR: 0.52, 95% CI: 0.34-0.80). Across all outcomes, we saw minimal attenuation in the SVR cause-specific hazard ratio following adjustment for medical comorbidities, viral factors, behavioural factors and liver function tests.

ANALYSIS-2: ABSOLUTE RISK REDUCTION ASSOCIATED WITH SVR
SVR was associated with an ARR in liver mortality; all-cause mortality; SLM; and cardiovascular disease (Table 3). For each of these outcomes, the ARR increased incrementally over time. For instance, for liver mortality, the ARR was 1.2% at 2.5 years; 1.9% at 5.0 years; and 3.0% at 7.5 years. By 7.5 years, the largest ARR was evident for SLM (4.7%, 95% CI: 2.9-6.4); followed by all-cause mortality (3.9%, 95% CI: 1.5-6.4); followed by cardiovascular disease (3.4, 95% CI: 0.5-6.1), followed by liver mortality (3.0, 95% CI: 1.5-4.4). We observed negligible changes in these ARRs when adjustment for mortality as a competing risk was ignored (see eTable 4).

ANALYSIS-3: INTERACTION ACCORDING TO MILD VS NON-MILD LIVER DISEASE

Individuals missing APRI differed significantly (P-value<0.05) from those not missing APRI, in terms of: CCI, viral genotype, alcohol use, pre-treatment GGT, liver clinic, SVR attainment, and calendar period. In other respects these two groups were similar (see eTable2). For individuals where APRI was known, 51.8% had a value less than 0.7 (see Table.1). Where APRI score was unknown, a similar distribution was imputed (52.2% <0.7, Vs 47.8% ≥0.7). Based on these imputed and known values, we saw a general trend towards a smaller cause-specific hazard reductions associated with SVR in the presence of mild disease compared to non-mild disease (Fig.1). However, only the interaction term in the all-cause mortality model was statistically significant (at P<0.05). Evidence of interaction was more evident for ARR (Fig.2). For liver mortality, ARR reduction was 6.3% Vs 0.0% according to non-mild Vs mild disease, respectively (P=0.001); for all-cause mortality, ARR reduction was 7.9% Vs 0.2% (P=0.011); for severe liver morbidity, ARR reduction was 10.2% Vs -0.4% (P<0.001); and for cardiovascular disease, ARR reduction was 7.0% vs. -0.3% (P=0.030). In contrast, ARR in non-liver mortality, respiratory disorder and neoplasms did not differ according to disease severity (P values =0.54, 0.60 and 0.49, respectively). Finally, comparisons between our complete case analysis and multiple imputation analysis did not suggest divergent results (see eTables 5-6).
DISCUSSION:

Analysis-1 demonstrates that in this cohort as a whole, SVR was associated with a reduction in the cause-specific risk of a broad range of outcomes. Consistent with the principally hepatic nature of HCV infection, the greatest divergences were seen for liver-related events. After full adjustment for confounding, patients with SVR exhibited >75% reduced risk of liver mortality and SLM, relative to patients without SVR. Yet, significant associations were not confined to hepatic events alone. We report an association between SVR and a 32% risk reduction in non-liver mortality (P-value, 0.026). This concurs with a similar finding in a cohort of HIV co-infected patients in Spain [6], but has not been rigorously examined for HCV mono-infection until now. A second result to emphasise is the association between SVR and a 30% reduction in the risk of hospitalisation for cardiovascular disease; this finding provides further evidence that HCV infection is a risk factor for cardiovascular impairment [8, 28]. We found no association between SVR and hospitalisation for respiratory disorders or non-hepatic neoplasms. One explanation of this null finding is the absence of a true effect. However, our definition of neoplasms and respiratory disorders was broad, and we cannot rule out that true, more specific associations, lie within these wide discharge categories.

A valuable dimension to this study is our description of the ARR associated with SVR (see analysis-2). ARR provides the most clinically relevant picture vis-à-vis the value of a medical intervention [9,10]. Importantly, after 7.5 years of follow-up, SVR was independently associated with ARRs of 3.0-4.7% for cardiovascular disease, liver mortality, all-cause mortality and SLM. In contrast, the association between SVR and ARR for non-liver mortality was smaller (0.9%) and not statistically significant (P=0.38) – assumedly, this equivocal result is the product of a relatively low underlying event rate, combined with a relatively marginal cause-specific hazard ratio.

Persons with mild disease represent the bulk of the general infected population [29] and there is increasing emphasis on diagnosing and treating this subpopulation. US birth cohort screening is a case in point because ~50% of persons due to be identified (equating to 750,000 individuals) are expected to have mild fibrosis [30]. But in spite of this predominance, the value of an SVR for individuals with
mild disease has not been established. Analysis-3 provides an initial look into this issue. Overall in our cohort, we found that an SVR was associated with significant 7.5-year ARRs for liver mortality, all-cause mortality, SLM, and cardiovascular disease. Yet, when ARRs were examined separately according to mild versus non-mild disease, we observed strong bimodality. In other words, ARR was apparent to a great extent in individuals with non-mild disease, but to a minimal and equivocal extent in individuals without (see Fig.2). Arguably, this is an unsurprising result; SLM and liver mortality tend to occur only after liver cirrhosis is established, and it generally takes decades, not 7.5 years, to reach this stage from a point of mild disease. Nevertheless, these findings should reassure patients with mild disease, and guide them apropos how urgently to embark onto treatment, and at what cost to their immediate quality of life. Conversely, it is worth re-iterating that individuals with non-mild disease do appear to profit appreciably from SVR in the short-term. At 7.5 years, ARRs were between 6.3% and 10.2% for liver mortality, all-cause mortality, SLM and cardiovascular disease. In a context of “sticker shock” drug prices [11] and finite health budgets, this benefit disparity might lend credence to strategically prioritising SVR attainment in those with moderate to advanced fibrosis [31] – but a greater evidence-base is needed

Previous studies tend to rationalise the association between SVR and improved prognosis through mechanisms of viral pathogenesis. An alternative explanation (though not a mutually exclusive alternative) is that SVR patients differ behaviourally from non-SVR patients over the course of follow-up [32]. Our examination of “negative control” outcome events supports this theory. We found that the risk of hospitalisation for alcohol intoxication and violence-related injury, was lower among SVR patients than non-SVR patients. These associations reflect, presumably, a disparity in lifestyle behaviours. Given our efforts to control for any baseline differences between SVR and non-SVR patients, we tentatively offer a hypothesis that SVR facilitates a positive change in lifestyle. Possibly, lifestyle change accounts for some of the superior prognosis apparent among our SVR population. Thus SVR affects prognosis directly (by halting viral pathogenesis), but perhaps indirectly too (through stimulating behaviour change). We propose two phenomena that might underpin such lifestyle reform:
i. Hawthorne Effect: Treatment is a tribulation through which patients are intensively coached (by medical and nursing staff). SVR patients - who tend to remain under close observation for at least a year – may be more susceptible to a persisting “Hawthorne Effect” (N.B. the Hawthorne Effect, in a medical context, has previously been defined as: “a motivational response to the interest, care, and attention received through observation and assessment”[33]).

ii. The “Epiphany effect”: The “euphoria” of clearing HCV galvanises one into adopting healthier lifestyle practices. Indeed, this chimes with a recurrently voiced patient vignette: that SVR attainment invokes a “renewed sense of purpose and determination” [34]. What we have dubbed here as the “epiphany effect” is in a similar vein to the “Teachable Moment” [35]- referring to “windows of opportunity” within which, patients are more receptive to the notion of behavioural reform.

Treatment is evolving and soon regimens will entail as standard: >90% SVR rates; short duration courses, minimal side effects, and minimal patient coaching [3]. It is worth pointing out that the influence of the Epiphany/Hawthorne effect is likely to deteriorate in this future era; i.e. any benefit hitherto incurred through behavioural change is unlikely to apply in a new climate where patients view SVR attainment as a given.

This study has several strengths. Firstly, we examined a diverse range of outcome events, and in this way, have been able to paint a comprehensive picture vis-à-vis the clinical benefit associated with SVR. Secondly, our study combines a large number of patients with an average per patient follow-up in excess of five years. This affords us good statistical power. Thirdly, our study is generalizable to “real world” treatment patients. In fact, we estimate that our cohort includes >80% of all HCV treatment initiates in Scotland between 1996 and 2011. Thus, our results are safe from the selection bias that may creep into studies recruiting cohorts from specialist academic centres. The final key strength to highlight is our initial examination of whether the value of SVR differs according to mild Vs. non-mild disease- until now, an area terra incognita. However, this study has limitations as well as strengths. The SVR cause-specific hazard ratio was resilient to adjustment for medical
comorbidies, viral genotype, behavioural factors and liver function tests (see Table 2). Nevertheless, we cannot rule out bias through unmeasured (i.e. residual) confounding. On a related note, it should be highlighted that some important co-factors were missing outright from this analysis (BMI, steatosis, and socioeconomic status). A second limitation is that we rely upon ICD codes to define our outcome events; however this coding process can be subject to errors [36], so it is possible that some outcome events among our cohort have been misclassified. Further, our hospitalisation data does not extend to data on accident and emergency attendance. This might particularly exclude negative control type events, but it is unclear if and how the omission of these data would bias our results. Another caveat is that SVR in our study refers, effectively, to diagnosed SVR status. This is subtly distinct from true SVR status because some individuals could have attained SVR but not have been diagnosed as such. Discordance between diagnosed and true SVR status is possible for patients who become lost to follow-up and do not receive the requisite PCR testing. From a previous analysis utilising the Scottish clinical database together with enhanced data collected from medical records, we know that a problematic group are end-of-treatment-responders that do not reappear for their subsequent SVR test [22]. But these patients constitute a minority (<5% of all those commencing treatment), so we would not expect this issue to affect our conclusions. Finally, we were not able to correct for individuals that incur health outcomes outside Scotland. Emigration in this cohort will be minimal; nevertheless, there is a risk of a bias if the likelihood differs according to SVR status.

In conclusion, SVR is associated with a reduced risk for a range of hepatic and non-hepatic events. To some extent, this could reflect an improved behavioural profile in those achieving SVR. Finally, our data indicates that the short-term value of SVR is greatest for patients with non-mild disease.
REFERENCES:

http://www.hepctrust.org.uk/Living+with+Hep+C/Personal+Stories/Prison+story+2;
http://www.hepctrust.org.uk/Living+with+Hep+C/Personal+Stories/Prison+Story+1;
http://www.hepctrust.org.uk/Living+with+Hep+C/Personal+Stories/Colins+story

