Random Neural Network Learning Heuristics

ABBAS JAVED, HADI LARIJANI, ALI AHMADINIA, AND ROHINTON EMMANUEL,

School of Engineering and Built Environment
Glasgow Caledonian University, UK
Email: H.Larijani@gcu.ac.uk

Abstract

The Random Neural Network is a probabilistic queueing theory based model for artificial neural networks, and it requires the use of optimisation algorithms for training. Commonly used gradient descent learning algorithms may reside in local minima, evolutionary algorithms can be also used to avoid local minima. Other techniques such as artificial bee colony, particle swarm optimisation, and differential evolution algorithms also perform well in finding the global minimum but they converge slowly. The sequential quadratic programming optimisation algorithm can find the optimum neural network weights, but can also get stuck in local minima. We propose to overcome the shortcomings of these various approaches by using hybridised artificial bee colony/particle swarm optimisation and sequential quadratic programming. The resulting algorithm is shown to compare favorably with other known techniques for training the Random Neural Network. The results show that hybrid artificial bee colony learning with sequential quadratic programming outperforms other training algorithms in terms of mean squared error and normalised root mean squared error.

TABLE 1. List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Artificial Bee Colony</td>
</tr>
<tr>
<td>ABC-BP</td>
<td>Hybrid ABC-Back-Propagation</td>
</tr>
<tr>
<td>ABC-SQP</td>
<td>Hybrid Artificial Bee Colony with Sequential Quadratic Programming</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>APSO</td>
<td>Adaptive Particle Swarm Optimisation</td>
</tr>
<tr>
<td>BFGS</td>
<td>Broyden Fletcher Goldfarb Shanno</td>
</tr>
<tr>
<td>BMSE</td>
<td>Best Mean Squared Error</td>
</tr>
<tr>
<td>DE</td>
<td>Differential Evolution</td>
</tr>
<tr>
<td>DFP</td>
<td>Davidson-Fletcher-Powell</td>
</tr>
<tr>
<td>GD</td>
<td>Gradient Descent Algorithm</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating Ventilation and Air Conditioning</td>
</tr>
<tr>
<td>KF</td>
<td>Kalman Filter</td>
</tr>
<tr>
<td>KKT</td>
<td>Karush-Kuhn Tucker</td>
</tr>
<tr>
<td>LM</td>
<td>Levenberg-Marquardt</td>
</tr>
<tr>
<td>MCRNN</td>
<td>Multiple Class Random Neural Network</td>
</tr>
<tr>
<td>MLRNN</td>
<td>Multi-layer Architecture of Dense Clusters of RNN</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mean of Mean Squared Error</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
</tr>
<tr>
<td>NNLS</td>
<td>Non Negative Least Square</td>
</tr>
<tr>
<td>NRMSE</td>
<td>Normalised Root Mean Squared Error</td>
</tr>
<tr>
<td>PS-EA</td>
<td>Particle Swarm Inspired Evolutionary Algorithm</td>
</tr>
<tr>
<td>PSO-SQP</td>
<td>Hybrid Particle Swarm Optimisation with Sequential Quadratic Programming</td>
</tr>
<tr>
<td>RBF</td>
<td>Radial Basis Function</td>
</tr>
<tr>
<td>RNN</td>
<td>Random Neural Networks</td>
</tr>
<tr>
<td>RPROP</td>
<td>Resilient backpropagation</td>
</tr>
<tr>
<td>SDMSE</td>
<td>Standard Deviation of Mean Squared Error</td>
</tr>
<tr>
<td>SQP</td>
<td>Sequential Quadratic Programming</td>
</tr>
<tr>
<td>WMSE</td>
<td>Worst Mean Squared Error</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

Erol Gelenbe Gelenbe [26, 27] proposed a new class of artificial neural networks (ANN) called Random Neural Networks (RNN) in which signals are either positive or negative spikes or “customers”. The RNN is based on probability theory and belongs to the family of Markovian queuing networks. It is a special case of G-networks
The main contributions of this paper are: ABC-SQP, PSO-SQP for seven different problem sets on the basis of mean squared error (MSE), normalised root algorithm in order to find the optimal weights. The performance of ABC, PSO, differential evolution (DE), GD, algorithm and then weights learned from the ABC algorithm are used as initial start points for the SQP optimisation can be overcome by hybridisation of ABC and SQP optimisation algorithms. Initially, the RNN is trained with ABC get stuck in local minima. The problem of slow convergence of ABC and local minima problem of SQP optimisation can be overcome by hybridisation of ABC and SQP optimisation. Sequential quadratic programming (SQP) optimisation algorithm can find the optimum weights but in presence of global minima it can yield very poor generalisation for new inputs.

Much recent work has linked the RNN and G-Networks to modeling and simulation in various areas. In Gelenbe and Marin [45], Gelenbe [35] similar models derived from energy or G-Networks are used to represent energy consumption in sensor networks, while Gelenbe and Ceran [37] consider energy distribution and its optimisation. Other work has modelled multiple users of energy using G-Networks to determine the optimum flow of different sources of energy to distinct consumers Gelenbe and Ceran [38] and has derived fast and efficient computational algorithms for this purpose Ceran and Gelenbe [17]. In Gelenbe [33, 34, 36] similar point process models are used for communications with spintronics, while Wang and Gelenbe [81] uses the RNN for smart routing in networks, as well as for building Software Defined Networks Francois and Gelenbe [23] that optimise quality of service (QoS). In Bi and Gelenbe [14], Akinwande et al. [6], Bi et al. [13] the RNN is used for smart routing of evacuees in emergencies, while Abdelrahman and Gelenbe [4] studies the movement of individuals or animals in a random environment.

Many applications of the RNN have been reported in Gelenbe [29, 31], including for optimisation Cancela et al. [16], Zhong et al. [86], pattern recognition Abdelbaki et al. [3], Gelenbe et al. [41], image processing Gelenbe et al. [39], Lu and Shen [68], Bakircioğlu et al. [9], communication systems Mohamed and Rubino [69], Öke and Loukas [70], multimedia server modelling Gelenbe and Shachnai [47], video compression Cramer et al. [20], routing for packet networks in Gelenbe and Kazhmaganbetova [43], Wang and Gelenbe [83] and emergency management in Gelenbe and Wu [50]. Recently in Wang and Gelenbe [80, 82], Gelenbe and Wang [49], Wang et al. [79], Brun et al. [15] the authors used RNNs with reinforcement learning for dynamic task allocation in Cloud servers and routing in multi-hop overlay networks. An intelligent internet search assistant based on the RNN was presented in Serrano and Gelenbe [74]. Multi-layer classifiers and auto-encoders based on the RNN were developed in Gelenbe and Yin [51].

Many researchers have used the Gradient Descent (GD) algorithm Gelenbe [30] for learning the weights of RNN models. The GD algorithm is easier to implement but zigzag behaviour may occur near the local minimum and in case of multiple local minima shown in Figure 1, the GD algorithm may learn suboptimal weights. In our previous work Javed et al. [61, 63, 62], we proposed the application of the hybrid particle swarm optimisation with sequential quadratic programming (PSO-SQP) algorithm for training a smart controller for the estimation of occupancy, thermal comfort based thermostat and heating ventilation and air conditioning (HVAC) controller. Results showed that the GD algorithm was unable to train the RNN model, while the PSO-SQP training algorithm gave satisfactory results. In this work, we propose a novel application of the artificial bee colony (ABC) and hybrid artificial bee colony with sequential quadratic programming (ABC-SQP) algorithm for training the RNN. ABC algorithm is simple and robust and it has good exploration and exploitation capabilities in searching global optima. Sequential quadratic programming (SQP) optimisation algorithm can find the optimum weights but in presence of global minima it can get stuck in local minima. The problem of slow convergence of ABC and local minima problem of SQP optimisation can be overcome by hybridisation of ABC and SQP optimisation algorithms. Initially, the RNN is trained with ABC algorithm and then weights learned from the ABC algorithm are used as initial start points for the SQP optimisation algorithm in order to find the optimal weights. The performance of ABC, PSO, differential evolution (DE), GD, ABC-SQP, PSO-SQP for seven different problem sets on the basis of mean squared error (MSE), normalised root mean squared error (NRMSE), number of iterations, and time required by each algorithm is analysed.

The main contributions of this paper are:
- A novel approach of using the ABC algorithm for training a RNN model is presented.
- A novel approach for training a RNN model with ABC-SQP (which is a hybrid optimisation method) is described.

RNNs are easy to implement in hardware as its neurons can be represented by simple counters Cerkez et al. [18], Abdelbaki et al. [2], and in Abdelbaki [1] the performance of the RNN was compared with conventional with ANNs for unseen patterns not covered in the training data, and found that the RNN accurately measured the output while the ANN failed to predict it accurately. Similarly in Mohamed and Rubino [69], the authors compared RNNs with ANNs and showed that training time for RNNs is greater than ANNs but the RNN outperformed the ANN during run-time. The authors further showed that the RNN had a strong generalisation capability for the patterns not covered in the training phase. ANNs are sensitive to the number of hidden neurons and over-training allows ANNs to memorise the patterns but yields very poor generalisation for new inputs.

Many applications of the RNN have been reported in Gelenbe [29, 31], including for optimisation Cancela et al. [16], Zhong et al. [86], pattern recognition Abdelbaki et al. [3], Gelenbe et al. [41], image processing Gelenbe et al. [39], Lu and Shen [68], Bakircioğlu et al. [9], communication systems Mohamed and Rubino [69], Öke and Loukas [70], multimedia server modelling Gelenbe and Shachnai [47], video compression Cramer et al. [20], routing for packet networks in Gelenbe and Kazhmaganbetova [43], Wang and Gelenbe [83] and emergency management in Gelenbe and Wu [50]. Recently in Wang and Gelenbe [80, 82], Gelenbe and Wang [49], Wang et al. [79], Brun et al. [15] the authors used RNNs with reinforcement learning for dynamic task allocation in Cloud servers and routing in multi-hop overlay networks. An intelligent internet search assistant based on the RNN was presented in Serrano and Gelenbe [74]. Multi-layer classifiers and auto-encoders based on the RNN were developed in Gelenbe and Yin [51].

Many researchers have used the Gradient Descent (GD) algorithm Gelenbe [30] for learning the weights of RNN models. The GD algorithm is easier to implement but zigzag behaviour may occur near the local minimum and in case of multiple local minima shown in Figure 1, the GD algorithm may learn suboptimal weights. In our previous work Javed et al. [61, 63, 62], we proposed the application of the hybrid particle swarm optimisation with sequential quadratic programming (PSO-SQP) algorithm for training a smart controller for the estimation of occupancy, thermal comfort based thermostat and heating ventilation and air conditioning (HVAC) controller. Results showed that the GD algorithm was unable to train the RNN model, while the PSO-SQP training algorithm gave satisfactory results. In this work, we propose a novel application of the artificial bee colony (ABC) and hybrid artificial bee colony with sequential quadratic programming (ABC-SQP) algorithm for training the RNN. ABC algorithm is simple and robust and it has good exploration and exploitation capabilities in searching global optima. Sequential quadratic programming (SQP) optimisation algorithm can find the optimum weights but in presence of global minima it can get stuck in local minima. The problem of slow convergence of ABC and local minima problem of SQP optimisation can be overcome by hybridisation of ABC and SQP optimisation algorithms. Initially, the RNN is trained with ABC algorithm and then weights learned from the ABC algorithm are used as initial start points for the SQP optimisation algorithm in order to find the optimal weights. The performance of ABC, PSO, differential evolution (DE), GD, ABC-SQP, PSO-SQP for seven different problem sets on the basis of mean squared error (MSE), normalised root mean squared error (NRMSE), number of iterations, and time required by each algorithm is analysed.

The main contributions of this paper are:
- A novel approach of using the ABC algorithm for training a RNN model is presented.
- A novel approach for training a RNN model with ABC-SQP (which is a hybrid optimisation method) is described.
A detailed comparison of seven popular optimisation algorithms (GD, PSO, ABC, DE, ABC-SQP, PSO-SQP, and SQP) for training RNN models for seven different problem sets is presented. The comparison of algorithms is done on the basis of MSE, NRMSE, the number of iterations, and the time required by each algorithm.

The rest of this paper is organised as follows. The related work on training the RNN is presented in Section 2 followed by a brief introduction to the RNN in Section 3. The learning algorithms used in this paper are described in Section 4 followed by a description of test problems and results in Section 5. The discussion and conclusions are presented in Section 6.

2 Related Work

Gelenbe introduced the GD algorithm for recurrent RNN in Gelenbe [30] which can be applied to a feed forward RNN model. Gelenbe and Timotheou [48] developed an extension of RNN to the case of synchronous interactions in which two neurons may create a synchronous interaction to affect third neuron. The learning algorithm for this recurrent network was also presented in Gelenbe and Timotheou [48]. In Atalay [7] the learning algorithm based on quadratic optimisation approach was presented. However, the learning algorithm was suited for image reconstruction problems only. In Halici [53] the reinforcement learning strategy for the RNN was tested on maze learning, and the results were satisfactory. Convergence time for the algorithm can be reduced by increasing a learning rate but this may cause learning a longer path. In Likas and Stafylopatis [67], the authors proposed the learning algorithm based on minimisation of quadratic error function using quasi newton optimisation technique. Likas and Stafylopatis [67] implemented Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi newton method and Davidson-Fletcher-Powell (DFP) quasi newton method and compared it with GD algorithm for RNN. The learning algorithm outperformed the GD learning algorithm but was computationally more expensive than the GD algorithm. Learning algorithm for multiple class random neural network (MCRNN) was introduced in Gelenbe and Hussain [42] by extending the GD algorithm for single class of the RNN, and is applicable on feed forward and recurrent RNNs. Complexity of learning algorithm is \(nC^3\) for recurrent RNNs, and \([nC]^2\) for feed forward RNNs, where \(n\) is the number of neurons and \(C\) is the number of signal classes. In Timotheou [77], the authors proposed a learning algorithm for the RNN by approximating the RNN equations as a non negative least square (NNLS) problem, and the results showed that the performance of the RNN NNLS algorithm was better than the GD algorithm. The resilient back-propagation algorithm (RPROP) for the RNN was implemented in Hubert [57], and it outperformed the GD algorithm. The Levenberg-Marquardt (LM) optimisation algorithm was implemented for the RNN in Basterrech et al. [10] where LM algorithm outperformed the GD for a few problems, but for function approximation problems, the GD was more accurate as compared to the LM algorithm. The training algorithm for multi-layer architecture of dense clusters of RNN (MLRNN) was proposed in Yin and Gelenbe [84].

Computational intelligence models inspired by nature, different aspects of human behaviour such as reasoning, fitness, perception, and learning have been used by many researchers to find the optimal solution of complex fitness problems. Evolutionary algorithms have also been used for solving optimisation problems. These techniques are better than gradient based techniques as they do not get stuck in local minimum, which is the major limitation of the GD algorithm. The GA proposed in Holland [56], PSO in Eberhart and Kennedy [21], DE in Storn and Price [76], ABC in Karaboga and Basturk [65] and SQP in Hock and Schittkowski [55] are also used to solve the optimisation problems.
Evolutionary algorithms were applied for training ANNs, and in Chau [19], the authors trained a feed forward ANN with the PSO algorithm and found that the PSO converged faster than the back propagation (BP) algorithm. The hybrid algorithm for ANN was proposed in Zhang et al. [85] by combining the PSO with the BP algorithm. Hybrid algorithms make use of strong global searching features of the PSO with local searching capabilities of the BP algorithm. It was shown in Zhang et al. [85] that the PSO-BP algorithm outperformed the BP algorithm and the Adaptive Particle Swarm Optimisation (APSO) algorithm. GA algorithm was also used for training the ANN. Recently, hybrid PSO-SQP algorithm have been used to train ANN for solving the 2-dimensional bratu equations in Raja et al. [72].

An ABC algorithm was proposed in Karaboga and Basturk [65], and performance of the ABC was compared with GA, PSO and Particle Swarm Inspired Evolutionary Algorithm (PS-EA). Results showed that the ABC algorithm outperformed GA, PSO and PS-EA algorithms. An ABC algorithm was also used for training an ANN in Karaboga et al. [64] and it was compared with BP(GD), BP(LM) and GA. It was found that the ABC algorithm can be applied for training in ANNs. In Shah et al. [75], the authors compared ABC training algorithms for ANN with BP algorithms and showed that performance of ABC was better than BP. The ABC algorithm was also applied for training the radial basis function (RBF) neural networks for classification problems in Kurban and Beşdo˘k [66]. The performance of ABC algorithm was compared with GD, Kalman Filter (KF) method and GA. It was found that performance of ABC was better than the other algorithms. The ABC algorithm was also used for synthesis of ANN in Garro et al. [25] which included not only the weights, but also the architecture and transfer function of the ANN. The methodology maximised the accuracy and minimised the number of connections of ANN.

A hybrid algorithm that combined ABC algorithm and LM algorithm was also used for training neural networks in Özturk and Karaboga [71]. The ABC algorithm is better in finding the global minimum, while LM algorithm works better in finding the local minimum. Initially, the ANN was trained with ABC algorithm and then weights learned from the ABC algorithm are used as initial start points for the LM algorithm in order to find the optimal weights. Results showed that the performance of the hybrid algorithm was better than ABC and LM algorithm individually. Similarly in Irani and Nasimi [59], hybrid ABC- back-propagation (ABC-BP) was used to train neural networks for bottom hole prediction in under balanced drilling.

The DE algorithm was used for training the ANN and the performance was compared with gradient based methods in Ilonen et al. [58]. The authors showed that there was no distinct advantage of using DE over gradient based methods. The DE and PSO algorithm for training of RNN were implemented in Georgiopoulos et al. [52] where these algorithms were compared with the GD algorithm. The hybrid training algorithm for RNN was implemented in Aguilar and Colmenares [5] by integrating the GA with GD algorithm. The RNN model was trained with the GD algorithm and weights were further optimised by using the GA. Results showed that the hybrid algorithm was better than the GD algorithm.

3 Random Neural Networks

In the RNN (shown in Figure 2), signal travels in the form of impulses between the neurons. If the receiving signal has positive potential (+1) it represents excitation, and if the potential of the input signal is negative (-1) it represents inhibition to the receiving neuron. Each neuron i in the RNN has a state \(k_i(t) \) which represents the potential at time \(t \). This potential \(k_i(t) \) is represented by a non-negative integer. If \(k_i(t) > 0 \) then neuron \(i \) is in excited state and if \(k_i(t) = 0 \) then neuron \(i \) is in idle state.

When neuron \(i \) is in excited state, it transmits an impulse according to the Poisson process rate \(r_i \). The transmitted signal can reach neuron \(j \) as an excitation signal with probability \(p^+(i,j) \) or as inhibitory signal with probability \(p^-(i,j) \), or it can leave the network with probability \(d(i) \) such that for all \(i \),

\[
d(i) + \sum_{j=1}^{N} [p^+(i,j) + p^-(i,j)] = 1, \quad w^+(i,j) = r_i p^+(i,j) \geq 0, \quad w^-(i,j) = r_i p^-(i,j) \geq 0,
\]

so that

\[
r(i) = (1 - d(i))^{-1} \sum_{j=1}^{N} [w^+(i,j) + w^-(i,j)],
\]
which is the firing rate of neuron i. Since the ‘w’ matrices are the product of firing rates and probabilities, they are always non-negative. External excitatory and inhibitory signals can also reach neuron i according to Poisson processes of rate Λ_i and λ_i, respectively. When an excitatory spike or positive is received at neuron i its potential $k_i(t)$ will increase to +1. If neuron i is excited and it receives an inhibitory spike, the potential of neuron i will decrease to zero. Arrivals of inhibitory or negative signals will have no effect on neuron i if its potential is already zero. The description of the symbols used are given in Table 2. Consider the vector $K(t) = (k_1(t), \ldots, k_n(t))$ where $k_i(t)$ is the potential of neuron i and n is the total number of neurons in the network. Let K is continuous time Markov process. The stationary distribution of K is represented by:

$$\lim_{t \to \infty} P_r(K(t)) = (k_1(t) \ldots k_n(t)) = \prod_{i=1}^{n} (1 - q_i) q_i^{n_i}, \quad q_i = \frac{G_i^+}{r_i + G_i^-},$$

\[3\]

where

\[G_i^+ = \Lambda_i + \sum_{j=1}^{N} q_j w^+(j,i), \quad G_i^- = \lambda_i + \sum_{j=1}^{N} q_j w^-(j,i).\]

\[4\]

For a three layer network, the q_i for each layer is calculated as:

$$q_i = \frac{\Lambda_i}{r_i + \lambda_i}, \quad q_h = \frac{\sum_{i \in I} q_i w^+(i,h)}{r_h + \sum_{i \in I} q_i w^-(i,h)}, \quad q_o = \frac{\sum_{h \in H} q_h w^+(h,o)}{r_h + \sum_{h \in H} q_h w^-(h,o)},$$

\[5\]

when I, H and O denote the sets of Input, Hidden and Output layers, respectively, and $i \in I$, $h \in H$, $o \in O$. According to Mohamed and Rubino [69], the cost of computing the output of the RNN is $\Theta(2|I||H| + 3|H| + |I|)$ products (or divisions) and $\Theta(|H| + |I|)$ sums, where $|X|$ denotes the number of elements of set X. input neurons and H is the number of output neurons.
4 Learning Algorithms

A useful objective function for training the RNN given in (6) Gelenbe [30] is the quadratic cost function:

\[f(x) = \frac{1}{2} \sum_{p=1}^{N} \sum_{o \in O} [q_o(p) - q_{des,o}]^2, \]

where \(N \) is the number of patterns, and \(q_o(p) \) is the output of the RNN calculated by solving (5).

The GD algorithm developed by Gelenbe [30] adjusts the parameters in order to minimise the cost function \(f(x) \) represented by Eq. (6). For details of updating the weights of RNN with GD algorithm, reader is referred to Gelenbe [30].

4.1 Artificial Bee Colony Algorithm

In this work, the ABC algorithm proposed in Karaboga and Basturk [65] was used for training the RNN. The ABC algorithm was used to find optimised weights of the RNN. The procedure for finding the optimal weights for the RNN using ABC algorithm is as follows:

Step1: Initialise a population of \(s_i \) solutions, where \(i = 1,...,SN \), and \(SN \) denotes the size of population. Each solution is \(D \) dimensional vector, where \(D \) represents the number of parameters to be optimised. Each solution is an array of interconnected weights of the feed forward RNN of \(I \) Input nodes, \(H \) hidden nodes and \(O \) output nodes. The dimensions of \(D \) is \(2(I.H+H.O) \). The solution (food source positions) is formulated as \(s_i = [w_{+L1}^{ih} w_{+L2}^{ho} w_{-L1}^{ih} w_{-L2}^{ho}] \), where \(i \in I, \ h \in H, \ o \in O \). The weights are randomly distributed over the interval of \([0,1]\).

\[w_{+L1}^{ih} \] is positive interconnection weight between node \(i \) of layer 0 and node \(h \) of layer 1.

\[w_{+L2}^{ho} \] is positive interconnection weight between node \(h \) of layer 1 and node \(o \) of layer 2.

\[w_{-L1}^{ih} \] is negative interconnection weight between node \(i \) of layer 0 and node \(h \) of layer 1.

\[w_{-L2}^{ho} \] is negative interconnection weight between node \(h \) of layer 1 and node \(o \) of layer 2.

Step2: Evaluate the fitness value (\(fit_i \)) of population (see Karaboga and Basturk [65]).

\[fit_i = \begin{cases} \frac{1}{1+f(x)} & \text{iff } f(x) \geq 0 \\ 1+|(f(x)| & \text{iff } f(x) < 0 \end{cases} \]

(7)

Step3: For each employed bee, calculate new solution \(V_{ij} \) and evaluate the fitness.

\[V_{ij} = s_{ij} + \theta_{ij}(s_{ij} - s_{kj}) \]

(8)

where \(k = 1,2,...,SN \), and \(j = 1,2,...,D \) are randomly chosen indexes, and \(\theta_{ij} \) is a random number between [-1, 1]. \(\theta_{ij} \) controls the contribution of difference of two randomly selected positions in production of neighbour food sources are \(s_{ij} \).

Step4: Apply the greedy selection process.

Step5: Calculate the probability value \(Prob_i \) of the solution \(s_i \) by using Eq. (9).

\[Prob_i = \frac{fit_i}{\sum_{n=1}^{SN} fit_i} \]

(9)

Step6: For each onlooker bee, calculate the new solution \(V_{ij} \) by selecting the solution \(s_{ij} \) on the basis of probability \(Prob_{ij} \).

Step7: Calculate the fitness value \(fit_i \).

Step8: Apply the greedy selection process.

Step9: Check if there is any food source abandoned by the bees. If there is any scout bee will randomly determine the new food source (solution \(s_i \)) by using Eq. (10).

\[s_{ij} = s_{ij}^{s_{ij}} + rand(0,1)(s_{ij}^{s_{ij}} - s_{ij}^{s_{ij}}) \]

(10)
Step10: Store the best solution achieved so far.
Step11: Go to Step 3 until reach maximum number of cycles, or minimum threshold for MSE is achieved, or MSE remain unchanged for certain number of cycles.

4.2 Sequential Quadratic Programming
Consider the equality constrained problem

\[
\begin{align*}
\min f(x) &= \frac{1}{2} \sum_{p=1}^{N} \sum_{o=1}^{O} [q_o(p) - q_{des,o}]^2 \\
\text{subject to} \quad c(x) &= 0
\end{align*}
\]

(11)

where \(0 \leq X \leq 1\), \(N\) is the number of patterns, \(O\) is the number of output, \(q_{des,o}\) is the desired output in training pattern, \(q_o(p)\) is the output of RNN calculated by solving Eq. (5).

Constraint handling strategies usually convert the problem into sub-problems so that it can be easily solved, and used as the basis of an iterative process. In de Freitas Vaz and da Graça Pinto Fernandes [24], Venter and Haftka [78], Richards [73], the constraint problems are transformed into unconstrained problems. The constraint handling strategies should preserve the feasibility of constraints in the optimisation solution. This constraint feasibility can be guaranteed by including Karush-Kuhn Tucker (KKT) equations in optimisation formulation. The KKT equations are necessary and sufficient condition for optimality of constrained optimisation problem.

SQP proposed in Hock and Schittkowski [55] is an efficient and accurate non linear programming method for constrained optimisation. The SQP algorithm can be considered as an application of Newton’s method to Karush-Kuhn Tucker (KKT) optimality conditions for Eq. (6). The SQP uses BFGS quasi newton method to calculate the approximation of Hessian of Lagrangian function at every iteration.The problem is transformed in to quadratic programming (QP) sub-problem stated whose solution is used to form a search direction for a line search procedure. The Lagrangian function is shown in Eq. (13) where \(\lambda\) is the vector of Lagrangian multiplier

\[
L(X_k, \lambda) = f(X_k) + c(X_k)^T \lambda
\]

(13)

The problem is transformed in to quadratic programming (QP) sub-problem stated by Eq. (11) subject to Eq. (12)

\[
\begin{align*}
\min \frac{1}{2} d^T H_k d + \nabla f(X_k)^T d
\end{align*}
\]

(14)

subject to \(Lb \leq X_k + d_k \leq Ub\)

The Hessian of the Lagrangian function is constructed from quasi newton formula

\[
H_{k+1} = H_k + \frac{q_k q_k^T}{s_k^T s_k} - \frac{H_k s_k s_k^T H_k}{s_k^T H_k s_k}
\]

(15)

where

\[
s_k = X_{k+1} - X_k
\]

(16)

\[
q_k = \nabla L(X_{k+1}, \lambda_{k+1}) - \nabla L(X_k, \lambda_{k+1})
\]

(17)

At every iteration of QP sub-problem, the direction \(d_k\) is obtained using Eq. (14). The new iterate obtained by using this solution is given by

\[
X_{k+1} = X_k + \alpha_k d_k
\]

(18)

where \(\alpha_k\) is the step length values used to obtain sufficient decrease in augmented Lagrangian function

\[
L_A(X, \lambda, \rho) = f(X) - \lambda^T (X) + \frac{\rho}{2} c(X) C(X)
\]

(19)

\(\rho\) is non-negative scalar. The procedure will continue until the minimum threshold of Eq. (11) is achieved or \(s_k\) has reached some tolerance value.
4.3 Hybrid Artificial Bee Colony Algorithm with Sequential Quadratic Programming Algorithm

The ABC algorithm is good in finding global minima but it might be slow to converge to global minima, while in presence of multiple local minima, SQP optimisation method usually converges to local minima. In this paper, we propose a hybrid ABC-SQP algorithm for RNN training. First, RNN was trained with ABC algorithm to find the global minima, then based on this feasible start point from ABC algorithm, SQP optimisation algorithm converged to global minima. The flow chart of the hybrid ABC-SQP is shown in Figure 3.

4.4 Particle Swarm Optimisation for Training RNN

4.4.1 AIW-PSO Learning Procedure

The steps required for the implementation of AIW-PSO training algorithm proposed in Georgiopoulos et al. [52] are as follows:

Step1: Initialise a population of S particles with random positions and velocities of d dimensions in the problem space. The position vector is an array of interconnected weights of feed forward RNN of I Input nodes, H hidden nodes and O output nodes. The dimensions of D is $2(I,H+H,O)$. The position vector is formulated as $X_{sd} = [w_{ih}^{L1}w_{ho}^{L2}w_{ih}^{L1}w_{ho}^{L2}]$, where $i \in I$, $h \in H$, $o \in O$. The weights are randomly distributed over the interval of $[0,1]$.

Step2: Each particle from position in generation k moves to new position $k+1$ by using PSO equation given in Eq. (20). The c_1 constant value is set to 2.6 and c_2, constant value is set to 1.1.

$$V_{sd}^{k+1} = WV_{sd}^{k} + c_1 rand() (P_{bestsd}^{k} - X_{sd}^{k}) + c_2 rand() (G_{bestsd}^{k} - X_{sd}^{k})$$ \hspace{1cm} (20)

$$X_{sd}^{k+1} = X_{sd}^{k} + V_{sd}^{k+1}$$ \hspace{1cm} (21)

$$W_{sd}^{k} = 1 - \frac{1}{1 + exp(-\alpha.ISA_{sd}^{k})}$$ \hspace{1cm} (22)

$$ISA_{sd}^{k} = \frac{|X_{sd}^{k} - P_{bestsd}^{k}|}{|P_{bestsd}^{k} - G_{bestsd}^{k}|}$$ \hspace{1cm} (23)
4.5 Hybrid Particle Swarm Optimisation with Sequential Quadratic Programming

The hybrid PSO-SQP algorithm first uses the PSO algorithm for finding the global minima, then based on this feasible start point from ABC algorithm, SQP optimisation algorithm converged to global minima. In this paper, the number of iterations for PSO is set to 2000. After getting initial starting point from PSO the SQP optimisation algorithm has been executed for maximum of 400 iterations. The flow chart of PSO-SQP is shown in Figure 4.

4.6 Differential Evolution Optimisation for Training RNN

The steps required for the implementation of DE training algorithm proposed in Georgioupolous et al. [52] are as follows:

Step1: Initialise a population of S particles with random positions and velocities of D dimensions in the problem space. The position vector is an array of interconnected weights of feed forward RNN of I Input nodes, H hidden nodes and O output nodes. The dimensions of D is $2(IH+HO)$. The position vector is formulated as $X_{sd} = [w_{ih}^{+L1} w_{ho}^{+L2} w_{ih}^{-L1} w_{ho}^{-L2}]$, where $L1$ is the layer 1, $L2$ is the layer 2, and $i \in I$, $h \in H$, $o \in O$. The weights are randomly distributed over the interval of $[0,1]$.

Step2: Randomly generate three integer numbers $r_{1d}, r_{2d}, r_{3d} \in [1, S]$, where $r_{1d} \neq r_{2d} \neq r_{3d} \neq S$. Set the value of F and CR to 0.8 and 0.7 respectively.

Step3: Mutation operator is the prime operator of DE and it is the implementation of this operation that makes DE
Different from other Evolutionary algorithms. Mutate every particle of the population \((1 \leq s \leq S)\) by applying the DE equation
\[
Y_{sd}^{k+1} = X_{rd}^k + F(X_{rd}^k - X_{rd}^s) \tag{24}
\]
The mutated \(s^{th}\) particle at generation \(k+1\) is of dimension \(D\). The mutated \(s^{th}\) particle is sum of another particle at location \(r_{1d}\) and difference of particle values at location \(r_{2d}\) and \(r_{3d}\). The contribution of difference of particles is controlled by parameter \(F\).

Step 4: Randomly generate one real number \(rand() \in [0, 1]\). Cross over the mutated particle and the original particle using Eq. (25).
\[
\begin{align*}
U_{sd}^{k+1} &= Y_{sd}^{k+1} & \text{if } rand() \leq CR \\
U_{sd}^{k+1} &= X_{sd}^k & \text{if } rand() > CR
\end{align*} \tag{25}
\]

Step 5: Evaluate the fitness function given in Eq. (6) for \(U_{sd}^{k+1}\). If fitness value for \(U_{sd}^{k+1}\) is less than \(X_{sd}^k\), then update \(X_{sd}^{k+1}\) to \(U_{sd}^{k+1}\) else \(X_{sd}^{k+1} = X_{sd}^k\).

Step 6: For checking the convergence criteria, compute the average squared error of Eq. (6). If the mean square error is not less than threshold, go to Step 2. If stopping criteria is met or maximum number of iterations is achieved, learning is complete.

5 RESULTS

In this section, the performance of the algorithms are compared for six different test problems. Problem 1, Problem 2 and Problem 3 are examples of pattern classification while Problem 4, Problem 5 and Problem 6, Problem 7 are examples of function approximations. The mean of MSE (MMSE), Standard Deviation of MSE (SDMSE), Best Mean Squared Error (BMSE) and Worst Mean Squared Error (WMSE) were compared for different number of iterations. The performance of algorithms were further compared in terms of NRMSE and computational time.

The learning rate for the GD algorithm was 0.01. Population size for ABC, PSO, SQP was 40. The maximum number of iteration/epochs for GD/ABC/PSO/DE algorithms was 2000.

5.1 Comparison of Training Algorithms for Pattern Classification Problems

5.1.1. Test Problem 1- XOR Problem

The exclusive-OR (XOR) problem has been widely used by researchers for evaluating the performance of learning algorithms. The XOR is difficult classification problem of mapping two binary numbers into one binary output. In this evaluation, a 2-4-1 feed forward network with 24 interconnection weights was used for comparison. The inputs and outputs are normalised between 0 and 1. The value of \(D\) was 24, where \(D\) is the number of optimisation parameters. The MMSE, SDMSE, BMSE, and WMSE for XOR problem in relation to ABC, PSO, DE, GD, ABC-SQP, PSO-SQP and SQP are given in Table 3. The MMSE achieved by the GD algorithm was 1.90E-01, while the MMSE achieved by ABC was 2.21E-02, 4.12E-02 with PSO, 6.49E-02 with DE after 2000 iterations. The MMSE achieved by ABC-SQP was 9.28E-03, 4.12E-02 with PSO-SQP and 1.92E-02 with SQP.

The hybrid ABC algorithm outperformed all algorithms and the MMSE was 9.28E-03 after 100 iterations. The MMSE of ABC-SQP algorithm was 95.16% less than GD algorithm while the MMSE of ABC-SQP was 77.42% less than the PSO/PSO-SQP algorithm, 85.7% less than the DE, 52.4% less than the SQP, 57.8% less than the ABC and 95.16% less than the GD algorithm. The BMSE achieved by ABC-SQP, PSO-SQP and SQP was 9.28E-03 but PSO-SQP and SQP was not robust, and in case of SQP the failure rate (the SQP failed to start) was 40%.
Table 4. Statistical Results for parity bit problem with ABC, PSO, DE, GD, ABC-SQP, PSO-SQP, SQP

<table>
<thead>
<tr>
<th></th>
<th>ABC</th>
<th>PSO</th>
<th>DE</th>
<th>GD</th>
<th>ABC-SQP</th>
<th>PSO-SQP</th>
<th>SQP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE</td>
<td>1.11E-01</td>
<td>1.40E-01</td>
<td>1.21E-01</td>
<td>2.22E-01</td>
<td>1.03E-01</td>
<td>1.38E-01</td>
<td>1.16E-01</td>
</tr>
<tr>
<td>SDMSE</td>
<td>1.71E-03</td>
<td>1.07E-02</td>
<td>1.27E-02</td>
<td>2.72E-04</td>
<td>2.10E-04</td>
<td>1.10E-02</td>
<td>8.15E-03</td>
</tr>
<tr>
<td>BMSE</td>
<td>1.07E-01</td>
<td>1.24E-01</td>
<td>1.03E-01</td>
<td>2.50E-01</td>
<td>1.02E-01</td>
<td>1.24E-01</td>
<td>1.03E-01</td>
</tr>
<tr>
<td>WMSE</td>
<td>1.13E-01</td>
<td>1.57E-01</td>
<td>1.46E-01</td>
<td>2.51E-01</td>
<td>1.03E-01</td>
<td>1.57E-01</td>
<td>Fails</td>
</tr>
</tbody>
</table>

Table 5. Parity Bit Problem

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>f(x,y,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

5.1.2. Test Problem 2- Parity Bit Problem

The RNN learning algorithms were also tested against parity bit problem. A 3-4-1 feedforward RNN network with 32 interconnection weights was trained. If the number of binary inputs were odd, the output was 1 otherwise output was 0 as shown in Table 5. The inputs for RNN were x, y, z, and the output of RNN was f(x,y,z). The MMSE, SD-MSE, WMSE and BMSE with the GD, ABC, PSO, DE, ABC-SQP, PSO-SQP and SQP are shown in Table 4. The MMSE with ABC algorithm was 1.11E-01, with PSO was 1.40E-01, with DE was 1.21E-01, with GD was 2.22E-01, with ABC-SQP was 1.03E-01, with PSO-SQP was 1.38E-01 and with SQP was 1.16E-01. Results showed that the ABC-SQP algorithm outperformed other algorithms. The MMSE with ABC-SQP was 54.5% less than GD, 15.5% less than DE, 26.9% less than PSO, 7.74% less than ABC, 25.83% less than PSO-SQP, and 11.1% less than SQP. The failure rate of SQP algorithm was 28.75%.

5.1.3. Test Problem 3- IRIS Flower Database

Iris dataset is one of the best known datasets available for pattern recognition problems and is available in Bache and Lichman [8]. The data set contains 3 classes (Iris Setosa, Iris Versicolour, Iris Virginica) of 50 instances each, in which each class refers to a type of Iris plant. The inputs for the dataset were: Sepal length in cm, Sepal width in cm, Petal length in cm, Petal width in cm. For classification, a feed forward RNN with 5 neurons in hidden layer gave good performance. The mean percentage of correct classification after 10 runs with GD algorithm was 66.7%, with ABC was 87.3% with ABC-SQP was 95.33%, with PSO was 68.21%, with PSO-SQP was 95.10%, with SQP was 95.10%, with DE was 86.78%.

5.2 Comparison of training algorithms for Function Approximation Problems

5.2.1. Test Problem 4- Temperature Prediction for residential building

The training algorithms were compared for training a RNN model used for building energy usage described in Javed et al. [60]. The future air temperature of the living room was predicted by the RNN model which was three layered network and trained with data of 05 days collected after every 120 seconds from living room of the building and validated with data of 15 days. During the training period the outside temperature varied between -8.2°C to 7.7°C and during the validation period the outside temperature varied between 21.1°C to 10.3°C. The RNN model had four neurons as input layer, five neurons in the hidden layer and 1 neuron in the output layer. The inputs of the RNN model were current room air temperature (T_air), outside temperature (T_out), the number of occupants and flowrate (m') of inlet water for radiator, and the output of the RNN model was the future (t+2 minutes) air temperature of room at present time (t'). The input data was normalised between 0.1 and 0.9.

A 4-5-1 feedforward RNN model with 50 interconnection weights was trained. The MMSE, SDMSE, BMSE, and WMSE for the temperature forecast problem with ABC, PSO, DE, GD, ABC-SQP, PSO-SQP, and SQP are given in
Table 6. After 2000 iterations the MMSE achieved with ABC algorithm was 2.77E-04, with PSO was 8.33E-04, with DE was 3.56E-05, with GD was 2.52E-03. The MMSE after 250 iterations with ABC-SQP algorithm was 1.27E-06, with PSO-SQP was 1.28E-06 and with SQP was 1.30E-06. The MMSE for ABC-SQP algorithm was 99.53% less than ABC-algorithm, 99.85% less than PSO, 96.40% less than DE, 99.94% less than GD, 0.38% less than PSO-SQP and 1.61% less than SQP algorithm.

5.2.2. Test Problem 5- Three Zone Building Model

A three zone single storey building situated in Chicago, USA was modelled in Energy Plus to generate training dataset for system identification using MLE+ (see Bernal et al. [12]). The building was fitted with floor heating system. The inputs for the RNN model were: temperature setpoint for zone 1, temperature setpoint for zone 2, temperature setpoint for zone 3, outside temperature, transmitted solar gains, total internal heat gains in zone 1, total internal heat gains in zone 2, total internal heat gains in zone 3, and floor temperature. The outputs of the RNN model were mean air temperature for zone 1, mean air temperature for zone 2, and mean air temperature for zone 3. A RNN model with 9 neurons in the hidden layer gave the best performance so the selected RNN model was 9-9-3 network. The statistical results with ABC, PSO, DE, GD, ABC-SQP, PSO-SQP and SQP for this problem are given in Table 7. The MMSE with ABC-SQP algorithm was 60.7% less than ABC algorithm, 83.76% less than PSO, 59.49% less than DE, 92.75% less than GD, 29.06% less than PSO-SQP and 3.02% less than SQP algorithm.

5.2.3. Test Problem 6- Engine Behaviour Modelling

This dataset was collected during an engine operation and available with neural network toolbox (see Beale et al. [11]). This benchmark problem is an example of nonlinear regression or function approximation problem. The engine speed and fuel rate are selected as inputs to the network while engine torque and nitrous oxide emission were selected as network outputs. A 2-4-2 RNN was selected for this problem. The statistical results of ABC, PSO, DE, GD, ABC-SQP, PSO-SQP and SQP are given in Table 8. The MMSE with ABC-SQP algorithm was 42.20% less than ABC algorithm, 55.5% less than PSO, 22.6% less than DE, 64.4% less than GD, 11.17% less than PSO-SQP and 10.01% less than SQP algorithm.
TABLE 9. Statistical Results for Occupancy Estimation problem with ABC, PSO, DE, GD, ABC-SQP, PSO-SQP, SQP

<table>
<thead>
<tr>
<th></th>
<th>ABC</th>
<th>PSO</th>
<th>DE</th>
<th>GD</th>
<th>ABC-SQP</th>
<th>PSO-SQP</th>
<th>SQP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE</td>
<td>2.96E-02</td>
<td>4.26E-02</td>
<td>3.64E-02</td>
<td>8.62E-02</td>
<td>2.02E-02</td>
<td>1.28E-02</td>
<td>2.12E-02</td>
</tr>
<tr>
<td>SDMSE</td>
<td>4.82E-04</td>
<td>1.22E-02</td>
<td>6.93E-04</td>
<td>4.19E-03</td>
<td>2.02E-02</td>
<td>1.28E-02</td>
<td>2.12E-02</td>
</tr>
<tr>
<td>BMSE</td>
<td>2.91E-02</td>
<td>3.16E-02</td>
<td>3.47E-02</td>
<td>8.10E-02</td>
<td>2.02E-02</td>
<td>1.24E-01</td>
<td>2.07E-02</td>
</tr>
<tr>
<td>WMSE</td>
<td>3.06E-02</td>
<td>6.15E-02</td>
<td>3.69E-02</td>
<td>9.20E-02</td>
<td>2.02E-02</td>
<td>1.63E-02</td>
<td>2.17E-02</td>
</tr>
</tbody>
</table>

TABLE 10. Fitness percentage

<table>
<thead>
<tr>
<th>Problem</th>
<th>ABC</th>
<th>PSO</th>
<th>DE</th>
<th>GD</th>
<th>ABC-SQP</th>
<th>PSO-SQP</th>
<th>SQP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td>70.16%</td>
<td>61.50%</td>
<td>49.29%</td>
<td>50.29%</td>
<td>80.76%</td>
<td>61.5%</td>
<td>73.95%</td>
</tr>
<tr>
<td>Problem 2</td>
<td>33.63%</td>
<td>25.23%</td>
<td>30.60%</td>
<td>2.24%</td>
<td>36.31%</td>
<td>25.84%</td>
<td>36.29%</td>
</tr>
<tr>
<td>Problem 4</td>
<td>90.04%</td>
<td>84.13%</td>
<td>96.97%</td>
<td>66.67%</td>
<td>99.31%</td>
<td>99.31%</td>
<td>99.31%</td>
</tr>
<tr>
<td>Problem 5</td>
<td>79.32%</td>
<td>67.45%</td>
<td>79.82%</td>
<td>77.31%</td>
<td>84.88%</td>
<td>86.96%</td>
<td>86.96%</td>
</tr>
<tr>
<td>Problem 6</td>
<td>90.04%</td>
<td>84.13%</td>
<td>96.97%</td>
<td>66.67%</td>
<td>99.31%</td>
<td>99.31%</td>
<td>99.31%</td>
</tr>
<tr>
<td>Problem 7</td>
<td>72.92%</td>
<td>67.56%</td>
<td>75.65%</td>
<td>54.27%</td>
<td>77.88%</td>
<td>78.00%</td>
<td>77.72%</td>
</tr>
</tbody>
</table>

5.2.4. Test Problem 7 - Occupancy Estimation

We exploited the significant statistical correlations between the occupancy levels and the CO\(_2\) concentration, room temperature, and ventilation actuation signals in order to identify a dynamic model for estimation of the occupancy level in Javed et al. [63]. The inputs for the RNN model were: air temperature of room, inlet air temperature, inlet CO\(_2\) concentration, indoor CO\(_2\) levels, and inlet air actuation signal while output of RNN model is occupancy levels. The statistical results of ABC, PSO, DE, GD, ABC-SQP, PSO-SQP and SQP are given in Table 9.

5.3 Performance comparison for Normalised room mean square error

The validation metric used in this work is fitness value (i.e., NRMSE) defined in the system identification toolbox of Matlab as follows

\[
fit := \left(1 - \frac{\| \hat{y} - y \|}{\| y - \frac{1}{N} \sum_{i=1}^{N} y(i) \|}\right) \times 100
\]

where \(\hat{y}\) is output of RNN and \(y\) is the target output. The fitness percentage for all test problems are given in Table 10. The ABC-SQP outperformed other algorithms for all problems in terms of NRMSE. Results showed that the ABC-SQP problem outperformed other training algorithms in terms of fitness percentage except for Problem 6 and Problem 7. For Problem 6, the fitness percentage of PSO-SQP is 78% which is 0.12% better than ABC-SQP. Similarly for Problem 7, the fitness percentage of SQP is 1.84% better than ABC-SQP.

5.4 Comparison of computational time

The computational time required by training algorithms was also compared for all test problems as shown in Table 11 in terms of average execution time required for each iteration. The average execution time by GD for all problems was the lowest but the MMSE for the GD algorithm was highest. The execution time by ABC, DE, and PSO was dependent on size of population, greater the population size higher is the execution time.

TABLE 11. Average computational time - Iteration per seconds

<table>
<thead>
<tr>
<th>Problems</th>
<th>ABC</th>
<th>PSO</th>
<th>DE</th>
<th>GD</th>
<th>ABC-SQP</th>
<th>PSO-SQP</th>
<th>SQP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td>0.024</td>
<td>0.029</td>
<td>0.045</td>
<td>0.0086</td>
<td>0.020</td>
<td>0.029</td>
<td>0.0139</td>
</tr>
<tr>
<td>Problem 2</td>
<td>0.030</td>
<td>0.036</td>
<td>0.02</td>
<td>0.011</td>
<td>0.030</td>
<td>0.036</td>
<td>0.038</td>
</tr>
<tr>
<td>Problem 3</td>
<td>0.39</td>
<td>0.4</td>
<td>0.63</td>
<td>0.135</td>
<td>0.41</td>
<td>0.44</td>
<td>0.76</td>
</tr>
<tr>
<td>Problem 4</td>
<td>8.39</td>
<td>8.66</td>
<td>12.37</td>
<td>3.21</td>
<td>9.13</td>
<td>8.68</td>
<td>9.05</td>
</tr>
<tr>
<td>Problem 5</td>
<td>2.62</td>
<td>2.76</td>
<td>15.52</td>
<td>3.19</td>
<td>6.38</td>
<td>6.55</td>
<td>30.48</td>
</tr>
<tr>
<td>Problem 6</td>
<td>2.44</td>
<td>1.56</td>
<td>4.06</td>
<td>0.90</td>
<td>2.56</td>
<td>1.64</td>
<td>2.74</td>
</tr>
<tr>
<td>Problem 7</td>
<td>0.62</td>
<td>0.59</td>
<td>1.16</td>
<td>0.47</td>
<td>0.74</td>
<td>0.77</td>
<td>2.02</td>
</tr>
</tbody>
</table>
6 CONCLUSION

In this work, the ABC algorithm which is a relatively new algorithm for optimisation has been used for training RNN models for pattern classification problems (Problem 1, Problem 2, Problem 3) and function approximation problems (Problem 4, Problem 5, Problem 6, Problem 7). A hybrid ABC-SQP algorithm has also been proposed in this study which was developed by combining the ABC algorithm and the SQP optimisation algorithm. The ABC-SQP combined the strength of ABC algorithm for finding global minima and strength of SQP optimisation algorithm for convergence to minima based on feasible starting point. The results of this work showed that ABC and ABC-SQP can successfully be used for training RNN models and ABC-SQP algorithm outperformed ABC, PSO, PSO-SQP, DE and GD algorithm in terms of MSE and NRMSE.

For function approximation problems i.e., Problem 4, Problem 5, Problem 6, and Problem 7, the performance of the DE algorithm was better than the ABC algorithm in terms of NRMSE, and MMSE. However, the computational time of ABC was 33.25% less than DE for Problem 4, 83.11% less than DE for Problem 5, 39.9% less for Problem 6 and 54% less for Problem 7. Due to the higher execution time, the DE was not suitable for hybridisation with SQP algorithm. The execution time of the GD algorithm for training Problems 1-7 was 57.5%, 63.33% 67.07%, 64.8%, 50.0% and 64.84% respectively less than the execution time required by the ABC-SQP algorithm.

However, the MMSE of the ABC-SQP algorithm was 95.16 % less than GD for Problem 1, 54.5% less for Problem 2, 99.94% less for Problem 4, 92.75% less for Problem 5, 64.4% less than GD for Problem 6 and 57.4% less than GD for Problem 7. It was further noticed that the ABC algorithm outperformed the GD algorithm in terms of MSE and NRMSE.

In the majority of the function approximation and pattern classification problems, the accuracy of the trained network was more important than the computational time that was being used. By minor compromises on computational time, the training error could be reduced significantly. In real time applications, the training algorithm needs to be be robust and accurate, and the results showed that the ABC and ABC-SQP algorithms were more robust and accurate than other algorithms.

REFERENCES

