The effectiveness of transcutaneous tibial nerve stimulation (TTNS) for adults with overactive bladder syndrome: A systematic review
Booth, Joanne; Connelly, Lesley; Dickson, Sylvia; Duncan, Fiona; Lawrence, Maggie

Published in:
Neurourology and Urodynamics

DOI:
10.1002/nau.23351

Publication date:
2018

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
The effectiveness of transcutaneous tibial nerve stimulation (TTNS) for adults with overactive bladder syndrome: A systematic review

Abstract

Aims: To evaluate effectiveness of transcutaneous tibial nerve stimulation (TTNS) for treating adults with overactive bladder (OAB) of idiopathic or neurogenic origin, using a systematic review of the literature.

Methods: Systematic searches of four databases were undertaken between 1980 and 2017. Included studies investigated effects of TTNS on OAB. Study selection, data extraction, quality appraisal was performed by two independent reviewers. Narrative analysis was undertaken where meta-analysis was not possible due to study heterogeneity. Meta-analysis of RCTs was performed using a fixed effects model.

Results: 10 RCTs and 3 prospective cohort studies involving 629 participants were reviewed. Meta-analysis of two trials comparing TTNS with sham showed mean reduction in total ICIQ Urinary Incontinence Short Form (ICIQ-UI SF) associated with TTNS of -3.79 (95% CI -5.82, -1.76; P=0.0003, I²=25%). Narrative review showed TTNS and antimuscarinic treatment were equally effective (four trials), TTNS provided greater benefit for OAB symptoms than behavioural interventions (two trials), tibial nerve and sacral foramen stimulation were equally effective but combined stimulation was most effective (one trial). Significant improvements in OAB symptoms were reported by 48-93% participants and UI cure rates of 25-45%. No adverse events were reported.
Conclusions: Limited evidence is provided that TTNS is an effective, safe intervention for idiopathic OAB in adults and may be of benefit in those with neurogenic OAB. Further studies are essential to confirm these results as well as to determine efficacy and associated costs for specific patient groups, most effective stimulation dosage, duration of effect and stimulation regimes for longer-term maintenance.

Keywords: Transcutaneous electric nerve stimulation; tibial nerve; neuromodulation; urinary bladder, overactive.

Introduction

Overactive bladder (OAB) is an increasingly prevalent condition affecting 12-17% of the adult population1,2 increasing to 30-40% in those aged 75 and over 3. By 2018, it is estimated that as many as 20% of the population worldwide will suffer from OAB4. Although not life-limiting OAB is nevertheless life-altering and may have profound impact on a person’s quality of life, ability to participate and overall wellbeing 5,6,7. Urgency was the most commonly experienced bothersome lower urinary tract symptom (LUTS) in a large cross-sectional survey of 3727 individuals8 and symptomatic urgency urinary incontinence (UUI) was reported as the most bothersome symptom at an individual level8.

An algorithmic approach is taken to managing OAB, based on implementation of evidence-based recommendations arising from current research evidence. Lifestyle changes and behavioural interventions are first-line therapy in all guidance 9,10,11 followed by various forms of second-line pharmacotherapy, before escalating to more invasive forms of treatment such as Botox, or sacral nerve stimulation where these therapies are found to be ineffective. While lifestyle and behavioural
intervention is fundamental to managing all forms of bladder dysfunction, a significant proportion of those who go on to drug-based treatments will experience adverse effects to such a degree that they discontinue use and longer term adherence to antimuscarinic drugs is poor \(^{12, 13}\). Hence alternative, non-pharmacological approaches to long-term management of OAB are increasingly sought. The ongoing nature of OAB means that total permanent resolution is unlikely and relapsing-remitting patterns across the course of the condition have been described \(^{14, 15, 16}\). Such natural history and progression patterns suggest that OAB is best viewed as a ‘long-term condition’ which requires to be self-managed by the person, with appropriate support to do this effectively.

There is grade A evidence that electrical stimulation of the tibial nerve by inserting a 34 gauge needle (percutaneous tibial nerve stimulation (PTNS) is an effective and safe treatment for idiopathic OAB \(^{17, 18}\) and the suggestion that this may also be the case for neurogenic lower urinary tract dysfunction is under investigation \(^{19}\). PTNS was first introduced in 1999 \(^{20}\) and has been routinely available for a number of years, receiving FDA approval in 2000 for office based treatment of OAB and approval from NICE in 2006 \(^{9}\). Despite only limited understanding of its mechanisms of action it occupies an important position in the OAB treatment algorithm between low-technology lifestyle, behavioural and pharmacological interventions and intensive, invasive surgical or implanted treatments such as Botox or sacral nerve stimulation. However PTNS involves delivery of an extended programme of treatment (usually 12 sessions of 20-30 minutes duration) by trained staff in a secondary care or clinic environment and thus completion involves a significant time and travel commitment by the person with OAB. Additionally, although acknowledged as effective, the costs of the treatment programme delivery and ongoing maintenance therapy may prohibit
availability and routine use in some healthcare services and countries. Given these limitations a growing number of studies have investigated the transcutaneous route for delivering tibial nerve stimulation. This alternative non-invasive treatment is safe, using only surface electrodes and may be self-administered by the person in their own home, thus supporting self-management and avoiding travel and staff costs21. It is convenient because the programme of delivery is decided entirely by the person with OAB and can therefore reflect personal choices and lifestyle.

Systematic reviews of effectiveness of PTNS alone18, 22, 23, 24 and general tibial nerve stimulation (including PTNS and TTNS), for OAB and urinary dysfunction25 and for neurogenic lower urinary tract dysfunction19 have been published. However there is no systematic review of the evidence in relation to TTNS alone. The systematic review reported here aimed to establish evidence of effectiveness of TTNS in the treatment of OAB in adult men and women.

Methods

The systematic review was carried out according to the review protocol published in PROSPERO (CRD42016041250) using Cochrane Collaboration methods and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework26.

Literature search strategy

Systematic searches for published papers indexed in MEDLINE, EMBASE, CINAHL, and the Cochrane Database of Systematic Reviews between 1980 and January 2017 were undertaken using a strategy combining selected subject headings and keywords relating to TTNS, OAB, UUI, mixed UI (MUI) and study design to
determine effectiveness of the intervention. The search strategy was developed for use in Medline (Appendix 1) and amended for use in other databases. Manual searching of reference lists, relevant systematic reviews and guidelines, was also performed. Results were filtered for English language.

Selection criteria

Included study designs were randomised controlled trials (RCT) and prospective observational cohort studies and inclusion was determined by the PICO criteria: Study Participants required to be adults aged < 18 years with reported subjective complaints of idiopathic or neurogenic OAB or MUI. Overactive bladder was defined according to the ICS definition as ‘urinary urgency, usually accompanied by frequency and nocturia, with or without urgency urinary incontinence, in the absence of urinary tract infection or other obvious pathology’ and mixed UI as ‘the complaint of involuntary loss of urine associated with urgency and also with effort or physical exertion, or on sneezing or coughing’\(^{27}\). The intervention was TTNS, used to treat OAB or MUI. Comparators were a placebo control, another intervention, a different site of transcutaneous electrical stimulation, PTNS or TTNS as an additional intervention. Primary outcomes were self-reported symptoms of urgency, frequency, nocturia, amount of leakage or number of episodes of UI. Secondary outcomes included health-related quality of life assessed using standardised measures, adverse events reports and urodynamic changes.

Study selection

Eligible studies were selected in a two stage process. Using the broad criteria of OAB or MUI and TTNS, two reviewers (from JB, LC, SD, FD) independently screened all titles and abstracts, where available, of bibliographic records retrieved.
Full-text copies of potentially relevant studies were retrieved. Two reviewers then used the pre-determined PICO selection criteria to assess eligibility. Disagreement was resolved by discussion with a third reviewer.

Data extraction and Quality Appraisal

Two reviewers (from JB, LC, SD, FD) extracted data independently using a review-specific tool. Data extracted included details of study design and methods; study participants including sex and age; urinary symptoms, dysfunction and method of measurement; TTNS protocols, outcomes, conclusions and adverse effects. Extracted data were cross-checked and disagreements resolved by consensus. Where indicated, authors were contacted and asked to provide missing information.

Independent assessment of methodological quality was conducted for trial designs (RCTs and CCTs) using the Cochrane Risk of Bias tool\(^2\)\(^8\). Quality was assessed as being of low/unclear/high risk of bias against seven criteria: random sequence generation (selection bias), allocation concealment (selection bias), blinding of assessors (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and ‘other’. Prospective observational cohort studies were assessed using the NICE quality assessment tool\(^2\)\(^9\) to address external validity of the studies in terms of the sample representativeness within the wider population, consecutive selection of participants, clarity of aims and outcomes targeted description of findings and sample and stratification of outcomes. The maximum total score was 8.

Data analysis/synthesis

Analysis was undertaken in RevMan 5.2\(^3\)\(^0\). For studies which reported mean differences a meta-analysis was performed to pool estimates of effect. Forest plots
were produced to visually assess the association across the included studies and the corresponding 95% confidence intervals (CI). The chi-squared test was employed to determine strength of evidence that heterogeneity was genuine, where \(P < .10 \), rather than \(P < .05 \) was considered indicative of statistically significant heterogeneity, due to the small number of studies and sample sizes. The \(I^2 \) statistic was used to quantify inconsistency, the percentage variability in effect estimates due to heterogeneity between studies rather than sampling error within studies. An \(I^2 \) value over 50% may indicate substantial heterogeneity. Pooled results were estimated using a fixed effects inverse-variance meta-analysis for difference in means between intervention and control groups with 95% CI. A fixed effect model is the best one to use when all included studies are functionally identical, there are no studies with extreme effect sizes that could influence the results and the number of studies is very small, meaning it may be difficult to estimate the between-study variance with any precision. Possibility of publication bias was evaluated by visual inspection for possible skewness in a funnel plot.

Results

Search Results

Database searches identified 1960 unique bibliographic references. Review of titles and abstracts resulted in the exclusion of 1938 papers that did not meet the broad inclusion criteria of reporting on TTNS and urge or mixed UI. Full texts were retrieved for the remaining 22 papers. These papers were screened for eligibility using the detailed PICO criteria. This resulted in the exclusion of a further 9 papers leaving 13
papers in the review (Fig. 1). Papers were rejected because they did not report on TTNS (n=8) and the full text of one paper could not be sourced.

Insert figure 1 here: Flow chart of study selection

The 13 papers reported 10 RCTs32-41 and 3 prospective cohort studies42,43,44. Included studies were published between 2002 and January 2017 with 9 of the 10 trials and 2 of the 3 prospective observational studies published since 2009. Extracted data from the 13 papers are presented in the table of characteristics (Table 1)

Insert table 1 here: Study characteristics

Methodological quality of included studies

The summary of the overall risk of bias across the 10 RCTs is provided in figure 2. Risk of bias was assessed to be unclear for the majority of the trials as a consequence of inadequate reporting which was a common feature. Main sources of bias were assessed as lack of random sequence generation, poor allocation and outcomes assessment blinding and selective outcome reporting particularly in relation to attrition. The prospective observational studies were all assessed as high quality with scores of 6, 7 and 7 from a maximum of 8 using the NICE Quality Assessment Tool29. Two were single site studies42,43, one did not recruit consecutive patients44 and one did not report stratified outcomes42.

Insert Figure 2 - Cochrane Risk of Bias summary for 10 RCT’s of TTNS here
Characteristics of studies

Overall the 13 included studies enrolled a total of 629 participants: 437 females (70%) and 176 males (28%), with 16 (2%) participants sex not reported. The 3 prospective cohort studies included a total of 157 recipients of TTNS, 41 males (26%) and 116 females (74%). The 10 RCTs enrolled a total of 472 participants, [321 women (68 %) and 135 men (32%)], of which 254 (54%) received the TTNS treatment. Thirty six participants in control groups received inactive sham (18%)

32, 33, 37, 142 (56%) received anticholinergic drugs [solifenacin succinate (49, 19%)]

34, oxybutynin immediate release (10, 4%) and extended release (84, 33%)

35, 39 bladder training and pelvic floor muscles training (26, 10%)

38, stretching exercises (12, 5%)

36, sacral foramina transcutaneous electrical stimulation

40 or no treatment (9, 4%)

41. Five RCTs were conducted only on women

32, 35, 38, 39, 41, one on men only

436 and 4 included mixed sex samples

33, 34, 37, 40. The 3 prospective cohort studies included both men and women. Participant ages encompassed the adult ages from 18 to 94, although in 10 of the 13 studies the mean age was between 45 and 69 and only one study included adults over the age of 80 (table 1). Idiopathic OAB was the focus of 7 of 10 RCTs including the five women-only trials, the trial in older care home residents

33 and the trial comparing different stimulation sites

40. Other studies focused on neurogenic OAB arising from MS

43, 44, Parkinson’s

37, stroke

36 and spinal cord injury

34.

Intervention: The TTNS intervention was not standardised across the studies and a range of dosages were delivered. The duration of treatment programme ranged from 4 to 12 weeks (mean 7.2 weeks, SD 3.6) and the total number of included sessions
from 5 to 90 (mean 21.6, SD 23). The length of individual stimulation sessions was 30 minutes in all but 3 studies40,43,44 where it was 20 minutes. Timing of session delivery varied from daily stimulation in 3 studies40,43,44, twice weekly in 7 studies32,33,34,35,36,37,39 and once weekly in 2 studies38,41.

Comparators: Three of the 10 RCTs compared TTNS with a sham32,33,37, 4 trials compared TTNS with an anticholinergic drug34,35,39,41, 1 trial compared TTNS with exercise36, 1 trial compared TTNS as an adjunct to first-line behavioural therapy with behavioural therapy alone38 and 1 trial compared two stimulation sites40. The three-arm trial reported by Souto et al39 compared TTNS with a group receiving extended release oxybutynin alone and a group receiving TTNS in addition to the drug. Surbala et al40 compared stimulation of the transcutaneous tibial nerve and sacral foramina sites and a combination of the two. Schreiner et al38 compared two groups of women who underwent a first line behavioural intervention involving 12 weeks of bladder training and pelvic floor muscle training, with half also receiving 12 weeks of TTNS.

Treatment outcomes

All but one study40 assessed clinical symptoms parameters using a voiding diary to measure primary or secondary outcomes. A range of standardised and validated patient reported symptom tools were also used including: The Overactive bladder questionnaire45 (OABq)32,35; International Prostate Symptom Score46 (IPSS)33,41; International Consultation on Incontinence Questionnaire – Urinary Incontinence Short Form47 (ICIQ-UI SF)33,37,38; Overactive Bladder Questionnaire48 (OAB V8)37; Overactive Bladder Syndrome Score49 (OABSS)40; Urinary Symptom Profile50 (USP)43. Quality of life measures were equally varied and included Incontinence
Quality of Life51 (I-QoL34,41; Mesure du Handicap Urinaire52(MHU43,44); Short-form Urinary Distress Inventory53(UDI-640); Short-form Incontinence Impact Questionnaire53(IIQ-740); Qualiveen54(QV44). Follow up was limited in the majority of studies. Eight of the 10 RCTs measured outcomes solely at the end of the treatment period, which ranged from 4 weeks32,34,40 to 12 weeks35,38,39. Two of the prospective cohort studies measured outcomes at two points: at 4 weeks43,44, 12 weeks44 and 10.8 months43. Treatment outcomes are shown in table 2. Given the heterogeneity in outcome measures used, data pooling for meta-analysis was not possible for the majority of outcomes.

Insert table 2 here – Review study outcomes

Bladder diary changes

When compared to sham, TTNS resulted in a significant reduction in urgency and nocturia in women with idiopathic OAB32 and adults with Parkinson’s 37. Improvements in UUI were observed but not significant (Table 2). When directly compared to antimuscarinic drug treatment TTNS and extended release oxybutynin produced similar significant improvements in frequency, urgency and UUI and reduction in pad use in women with idiopathic OAB35 (Table 2). In adults with neurogenic OAB secondary to spinal cord injury the volume per catheterisation and volume of daily leakage were reduced equally in those taking solifenacin succinate and those receiving TTNS34. In a comparison between lower limb stretching exercises and TTNS in men with post-stroke OAB, at six weeks and 12 months the TTNS group reported significantly improved urgency, frequency, nocturia and UUI36. There were no such changes found in the exercise control group; however the only statistically significant between-group differences were reported frequency at both
time-points and nocturia at 12 months36. Adding TTNS to standard first line behavioural interventions of bladder training and pelvic floor muscle training was effective for frequency, nocturia and urgency UI in older women with idiopathic OAB38. Significant improvements were shown between the TTNS-enhanced group after 12 weeks, compared to the behavioural treatment group in frequency, nocturia and episodes of urgency UI. In one RCT undertaken with older residents of care homes a significantly greater reduction in post void residual urine volume of 55ml was found in the TTNS group compared to the sham33. In summary, authors conclusions for voiding diary outcomes are that TTNS is effective for women with OAB32,38, neurogenic bladder dysfunction in Parkinson’s37 and following stroke36 and as effective as some anticholinergic drug treatment in women35 and those with spinal cord injury34.

OAB symptoms scores

In terms of patient-reported outcomes using standardised measures, when compared to sham intervention the IPSS scores of frail older adults treated with TTNS were significantly improved, reducing by a median of 7 points over the six-week intervention period33. In a group of Parkinson’s patients the OAB V8 scores in those receiving TTNS improved significantly compared to the sham group where there was little change observed37(Table 2). Comparisons between the effects of TTNS and different drugs on OAB symptoms showed that multimodal intervention (TTNS plus extended release oxybutynin) was more effective than TTNS alone over 12 and 24 weeks, however effects of TTNS were sustained over 24 weeks whereas the effects of the single drug therapy were lost39. The results of one small clinical controlled trial41 suggested that TTNS was as effective as immediate-release oxybutynin but more acceptable to women with OAB. When two different stimulation
sites were compared equal effectiveness was found for reducing OAB symptoms with sacral foramina and tibial nerve sites, however a greater effect on the OABSS was produced by stimulation of both sites simultaneously\(^40\). Thus in summary, authors of all studies indicate TTNS to be effective for reducing reported bladder symptoms, whether compared to sham\(^{33,37}\), compared to antimuscarinic drugs\(^{39,41}\), with other stimulation sites\(^40\) or over time\(^{43,44}\).

Quality of Life outcomes indicated TTNS to be associated with significantly greater improvement than sham intervention on the OABq\(^{32}\). In three trials comparing TTNS and drug therapy\(^{35,39,41}\) in women with idiopathic OAB, quality of life improved equally in all (Table 2). There were similar improvements in all 3 domains of the OABq with TTNS and ERO\(^{35}\), however the TTNS was associated with more prolonged reductions in symptom bother than the ERO in one study\(^{39}\), although combining the two resulted in the most improved quality of life. Similarly combined stimulation of sacral foramina and tibial nerve resulted in greater UDI-6 and IIQ-7 improvements than either site alone, but all were associated with significantly improved quality of life\(^40\).

Effectiveness of TPTNS:

Variability in outcome measures and reporting (despite contacting several authors), resulted in limited opportunity to pool data in meta-analyses. However sufficient data were extracted from two studies\(^{33,38}\) to enable meta-analysis of mean changes in the ICIQ-UI SF scores following a 12 session programme of TTNs. As shown in the forest plot (figure 3), compared to those in the control group meta-analysis demonstrated a clinically\(^{55}\) and statistically significant mean reduction of 3.88 points.
on the total ICIQ-UI SF (-5.59, -2.16; P<0.00001; I²= 25%; 40 participants) in those who received TTNS.

Insert figure 3 here: Forest plot

Observational studies outcomes

The three prospective cohort studies reported changes in bladder function associated with use of TTNS. Ammi (2014)43, in adults with refractory OAB and DeSeze(2011)44 in adults with MS and refractory OAB showed daily TTNS sessions resulted in significant clinical improvements in 53% and 83% participants respectively at 30 days (table 2), which continued to 90 days in one study44. Improvements in standardised patient-reported measures of Mesure du Handicap Urinaire (MHU) and Urinary Symptom Profile (USP) were reported43, together with significant improvements in urgency, frequency, number of weekly leaks and percentage of continent patients, at both 30 days and 90 days44. Volume at first involuntary detrusor contraction and maximum cystometric capacity were significantly increased in 50% of participants with OAB of neurogenic (n=37) or idiopathic (n=7) origin, receiving a single session of TTNS42.

Combined outcome overall

As shown in table 2, results from 9 studies report significant improvement in LUTS in 48% to 93% of participants undergoing TTNS intervention32,33,35,36,38,39,41,43,44. Cure rates of 25% to 45% for UI were reported in three studies35,36,44. No adverse events were reported by any study reporting use of TTNS.

Discussion
Our systematic review of 10 RCTS and 3 prospective cohort studies involving 629 participants indicates that 48-93% participants achieved significant symptom improvement following a programme of TTNS. Meta-analysis of data from two studies found a clinically and statistically significant reduction of 3.88 points on the ICIQ-UI SF, indicating that TTNS is an effective, non-invasive treatment for OAB in older adults. Additionally the absence of any reports of stimulation-related adverse events in the review confirmed the safety and tolerability of TTNS across adult populations for both idiopathic and neurogenic OAB.

Despite these promising findings there are a number of factors which suggest the need for caution in interpreting the review results. The studies were generally small, only two of the RCTs recruited according to a power calculation and risk of bias in the RCTs was unclear or high for the majority. Heterogeneity was marked in relation to participants’ age, sex, medical and urological conditions with a mix of idiopathic and neurogenic bladder dysfunction of variable duration and a tendency for more moderate than severe OAB symptoms represented.

The TTNS intervention was not standardised and the dose delivered varied between studies, although all used low frequency stimulation of 10-20 Hz. In terms of hours of stimulation this ranged between 2.5 hours and 12 hours in the RCTs and 10 and 30 hours in the prospective observational studies, showing the wide variation. Currently there is no evidence of superior efficacy with longer duration of stimulation and the optimum intervention programme or duration has not yet been established. A study using percutaneous tibial nerve stimulation suggests more frequent stimulation leads to a more rapid response however there was no difference between weekly and three times weekly dosages with regard to overall treatment outcome. Primary and secondary outcomes measured were varied and included individual LUTS, different
types of UI, changes in quality of life and urodynamic parameters. Eleven validated tools were used to measure outcomes across 13 studies. Due to differences in reporting of data, where some studies reported mean results and others mean changes and the lack of response from authors contacted to provide further information, data pooling was not possible for most reported outcomes. There was a lack of long-term follow up beyond 12 weeks; one trial reported outcomes at 6 months39 and one at 12 months36 and one prospective observational study followed women for a mean of 10.8 months43. Thus duration of potential effect is unclear and should be investigated in future research.

Economic evaluation was not formally addressed in any of the included studies; however Manriques (2016)35 discussed the affordability of TTNS stating a one-off cost of 45 euros for the TTNS equipment compared to a monthly average cost of antimuscarinics of 50 euros. Recent audit has shown costs associated with TTNS to be considerably lower than three routinely used anticholinergics in the UK at 2015 costs58. Nevertheless there is a lack of information on long-term economic aspects and comparison with other therapies, such as percutaneous TNS. Such information is required before implications for future practice can be reliably considered.

An important clinical issue is the place of TTNS in the OAB treatment algorithm. This review indicates the potential effectiveness of TTNS for use in idiopathic OAB and its safety for treating neurogenic OAB. These findings, together with the utility of TTNS in a supported self-management regimen22,25 and the low cost of the intervention58 make TTNS an attractive option for inclusion earlier in the treatment algorithm. Schreiner (2010)38 recommended that it is included as first line conservative therapy as an adjunct to lifestyle and behavioural conservative management in older women with UUI. Given its safety and the passive nature of the intervention there is also
potential for application in clinical situations where behavioural, lifestyle and pharmacological therapies might be inappropriate or contra-indicated, such as in the older, cognitively impaired population.

Previous systematic reviews have combined percutaneous (needle-electrode) TNS and transcutaneous (surface electrode) TNS in the same review19,23,56, hence the current lack of clarity in our understanding of effectiveness, cost-effectiveness and best position in the treatment algorithm for each intervention and the tendency to consider them as equivalent. This situation fails to recognise the potential to target each more carefully. While the possibility of equal effectiveness for the two routes of administration is accepted, it is also conceivable that there are differing mechanisms of action associated with each, which have yet to be identified. Our review results for TTNS suggest similar success rates to those achieved in the PTNS studies. Given the current lack of reliable information, all reviews of TNS regardless of type, highlight the need for greater information, particularly in terms of identifying predictors of those who will respond to treatment and likely success rates.

Conclusion

All studies in this systematic review demonstrate some benefit from TTNS, in terms of patient reported and urodynamic parameters. Safety and tolerability of the intervention is confirmed. However, in view of the limited quality of evidence further research is necessary to confirm effectiveness for specific patient sub-groups, as well the magnitude of effect sizes associated with use of TTNS for treating OAB in adults, the optimal stimulation programme, potential sustainability and duration of effect. The place of the transcutaneous route of delivery in the treatment algorithm, in contrast to the more costly and labour-demanding percutaneous route has yet to
be clarified, particularly in relation to the promising role for TTNS in ongoing self-management of OAB. Nevertheless, given its safety, low cost, ease of application and potential to support self-administration, there is a clear impetus for further research to establish definitive evidence on the role of TTNS as second-line therapy, after lifestyle and behavioural changes have been implemented and as a direct alternative to pharmacological therapy in adults with OAB of idiopathic or neurogenic aetiology.

References

43. Ammi M, Chautard D, Brassart E et al. Transcutaneous posterior tibial nerve stimulation: evaluation of a therapeutic option in the management of anticholinergic refractory overactive bladder *Int Urogynecol J* DOI 10.1007/s00192-014-2359-0.

Figure 1 – Flowchart of study selection

Flow chart of study selection

1,960 Articles identified in search for broad screening:
1,019 from MEDLINE
174 from Embase
116 from AMED
36 from CINAHL
15 from Cochrane CENTRAL

1,832 Duplicates excluded
Did not study TTNS and Urge or Mixed UI
Not original peer-reviewed articles
Abstract not available

128 Potentially relevant articles for narrow screening:
108 from MEDLINE
6 from Embase
6 from AMED
5 from Cinahl
4 from Cochrane CENTRAL

110 Studies excluded based on abstract screening by inclusion criteria
93 from MEDLINE
3 from Embase
6 from AMED
5 from Cinahl
3 from Cochrane CENTRAL

22 Potentially relevant articles for full text review
15 from MEDLINE
2 from Embase
1 from Cochrane CENTRAL
4 known to reviewers

1 known to reviewers: 39, 34, 35, 37

1 Full text not available
8 Other forms of electrical stimulation, not TTNS

13 Included studies:
10 Randomised Controlled Trials
3 Prospective cohort studies
Table 1 – Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Total normal patients</th>
<th>Mean age (male/female)</th>
<th>Type of QoL tool</th>
<th>Participants (melanoma)</th>
<th>Type of chemotherapy</th>
<th>Total treatment duration (weeks)</th>
<th>Total duration (months)</th>
<th>5-fluorouracil (F)</th>
<th>Other chemotherapy</th>
<th>Duration of treatment (days)</th>
<th>Surgery (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAU, 2012</td>
<td>97</td>
<td>67.7 (64.7)</td>
<td>Baseline QoL</td>
<td>25 (15.6)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>UK</td>
<td>50</td>
<td>65.2 (6.2)</td>
<td>QoL-FL-100</td>
<td>15 (12.5)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Clinic, 2012</td>
<td>100</td>
<td>63.2 (1.8)</td>
<td>QoL-FL-100</td>
<td>42 (35)</td>
<td>Chemotherapy</td>
<td>20 (60)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Mucosa, 2012</td>
<td>53</td>
<td>67.3 (10.7)</td>
<td>QoL-FL-100</td>
<td>30 (16.2)</td>
<td>Chemotherapy</td>
<td>20 (60)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Pernumbos, 2012</td>
<td>53</td>
<td>63.1 (5.96)</td>
<td>QoL-FL-100</td>
<td>21 (13.6)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Sano, 2012</td>
<td>51</td>
<td>65.2 (13.6)</td>
<td>QoL-FL-100</td>
<td>12 (10.2)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Scinti, 2013</td>
<td>51</td>
<td>65.2 (13.6)</td>
<td>QoL-FL-100</td>
<td>12 (10.2)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Seda, 2014</td>
<td>55</td>
<td>65.2 (13.6)</td>
<td>QoL-FL-100</td>
<td>25 (18.2)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Simple, 2014</td>
<td>44</td>
<td>65.2 (13.6)</td>
<td>QoL-FL-100</td>
<td>25 (18.2)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Crib, 2015</td>
<td>5</td>
<td>65.2 (13.6)</td>
<td>QoL-FL-100</td>
<td>5 (50)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
<tr>
<td>Mucosa, 2015</td>
<td>44</td>
<td>65.2 (13.6)</td>
<td>QoL-FL-100</td>
<td>25 (18.2)</td>
<td>Chemotherapy</td>
<td>10 (50)</td>
<td>2 (10)</td>
<td>0.4</td>
<td>6.8</td>
<td>7 (12)</td>
<td>3.2 (4.8)</td>
</tr>
</tbody>
</table>

Figure 2 – Cochrane Risk of Bias summary
Figure 3 – Forest plot – effects of TTNS on ICIQ-UI SF scores
Table 2 – Review study outcomes

Key: I = Intervention; C = Comparison; TTNS = Transcutaneous Tibial Nerve Stimulation; OAB = overactive bladder; BD = bladder diary; UUI = urge urinary incontinence; AUASI = American Urological Association Symptom Index; ICIQ-UI-SF = International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form; LUTS = Lower Urinary Tract Symptoms; OABV8 = Overactive Bladder Awareness Tool; NDO = Neurogenic Detrusor Overactivity; ERO = Extended Release Oxybutynin; IPSS = International Prostate Symptom Score; SF = Sacral Foramina Stimulation; OABQoL = Overactive Bladder Symptom Score, GRA = Global Response Assessment; OABq = Overactive Bladder Questionnaire, SF-36 = 36-Item Short Form Health Survey; PVR = post-void residual urine volume; SS = solifenacin succinate; VPC = Volume Per Catheterisation; BT = Bladder Training; PFME = Pelvic Floor Muscle Exercises; ERO = Extended Release Oxybutynin; UDS = urodynamic studies; DI = Detrusor Instability; USP = Urinary Symptom Profile; MNU = Mesure du Handicap Urinaire; NOUR = non-obstructive urinary retention; GRA = Global Response Assessment; FIDC = First Involuntary Detrusor Contraction; MCC = Maximum Cystometric Capacity; OR = odds ratio; CI = confidence interval; NS = Not significant.