MHAV: Multitier Heterogeneous Adaptive Vehicular Network with LTE and DSRC

S. Ansaria,, T. Boutaleba, S. Sinanovica, C. Gamioa, I. Krikidisb

aSchool of Engineering and Built Environment, Glasgow Caledonian University, UK
bDepartment of Electrical and Computer Engineering, Faculty of Engineering, University of Cyprus, Cyprus

Received 14 September 2017; accepted 15 November 2017
Available online xxxx

Abstract

Enabling cooperation between vehicles form vehicular networks, which provide safety, traffic efficiency and infotainment. The most vital of these applications require reliability and low latency. Considering these requirements, this paper presents a multitier heterogeneous adaptive vehicular (MHAV) network. Comprising of transport operator or authority owned vehicles in high tier and all the other privately owned vehicles in low tier, integrating cellular network with dedicated short range communications. The proposed framework is implemented and evaluated in Glasgow city center model. Simulation results demonstrate that the proposed architecture outperforms previous multitier architectures in terms of latency while offloading traffic from cellular networks.

Keywords: LTE; DSRC; Multitier; VANET; Heterogeneous; C-ITS

1. Introduction

Making vehicular networks (VANETs) heterogeneous allows us to complement one technology's drawbacks with another’s advantages. For instance, dedicated short range communication (DSRC) cannot provide reliability due to the presence of obstacles despite providing low latency in direct communications [1]. At the same time, packet switched cellular networks can provide higher reliability with acceptable delays in message dissemination [2]. Use of cellular networks in VANETs, especially long term evolution (LTE) has been studied intensively in [3–7]. Previous studies have suggested the use of LTE by itself, exploring its functionalities such as multicast/broadcast multimedia systems (MBMS) and device-to-device (D2D) communications in order to cater for capacity.

There have also been studies which considered integrating LTE with DSRC. Remy et al. [7] in the pursuit of integration proposed group formation of vehicles forming clusters. The vehicles then communicate with each other and infrastructure via an elected cluster head. Similar to the concept of cluster head, authors in [8] proposed multiple communication hops to reach an elected high tier node classified as a gateway. This concept of group formation and a gateway selection results in high overheads and also privacy and security issues. A survey carried out in [9] showed that 35% out of 1533 road users from US, UK and Australia were concerned about privacy in regards to sharing their information with other road users.

In order to reduce the privacy and security concerns, authors in [10,11,3,12] using either DSRC, LTE or both access technologies, suggested the use of public buses and transport as gateways. The advantage is their frequent and fixed routes, resulting in a number of predefined parameters. Researchers in [10] proposed to use DSRC while employing multiple hops. Their proposed architecture also included a gateway registration technique, known as longest registration time algorithm.
2. Multitier heterogeneous VANETs are then discussed within Section 5. Conclusions and future work, and Section 3 elaborates on the system model followed by simulation results in Section 4. Contributions of this paper include:

- A multitier LTE/DSRC integrated vehicular network architecture incorporating authority and operator owned vehicles known as Multitier Heterogeneous Adaptive VANET (MHAV).
- Message dissemination technique employed for packet forwarding in the proposed MHAV framework, balancing the load between LTE/DSRC network.

The remainder of this paper is organized as follows: Section 2 describes the proposed multitier heterogeneous framework, and Section 3 elaborates on the system model followed by simulation results in Section 4. Conclusions and future work are then discussed within Section 5.

2. Multitier heterogeneous adaptive VANETs

The MHAV framework incorporates high tier nodes (HTN) and low tier nodes (LTN). HTNs are the authority or operator owned vehicles such as public buses, taxis, council lorries, etc. while LTNs comprise of all the other private vehicles. Both HTNs and LTNs are assumed to be equipped with LTE and DSRC interface, integrated with the help of a control device [14].

Data delivery in the proposed framework is carried out with the collaboration of HTNs, traffic control center (TCC) and vehicular safety application (VSA) server. The TCC and VSA are situated at the core of LTE network and are also accessible via internet. All the LTNs are registered with respective HTN, which then enable V2I and V2V communications. If an HTN is not available, LTN falls back to using LTE network. HTNs regularly update their tables via LTE from TCC server including traffic conditions, their registered LTNs and neighboring HTNs. HTNs broadcast beacons every second consisting of their location, velocity and ID using DSRC. LTNs receiving these broadcasts run our proposed registration algorithm [15] in order to register with the most suitable HTN. Once the LTN is registered, all V2V communications are carried out via the registered HTN, acting as a message relay. The basic architecture of our proposed framework is shown in Fig. 1 and comparison with previous works is shown in Table 1.

Since all the traffic related information is updated in the TCC, LTNs which are not registered with HTNs can also access this information via LTE. As for the safety applications, we suggest the use of a differentiated quality of service (QoS) mechanism known as safety application identifier (SAI) described in [13] implemented via the VSA server. In the next subsection, we explain the proposed message dissemination technique implemented at the HTN.

2.1. Message dissemination technique

Since the presented framework does not use the concept of group formation, message dissemination technique would...
require message relaying via the registered HTN. We use the concept of our previously proposed safety application identifier (SAI) which assigns different applications with their required transmission parameters [13]. Within the SAI algorithm, the message is transmitted in accordance with the awareness range and beacon frequency requirements. Instead of using the LTE network, in our proposed framework, LTNs transmit messages to their registered HTNs. These HTNs then look up the LTN’s location and SAI from the received message. The HTN then locates all the vehicles that are intended to receive the message using the retrieved SAI and awareness range. Using the table updates from TCC, if these receivers are registered with the same HTN, they receive the message over DSRC. However, if the vehicles are registered with another HTN, the message is transmitted to the respective HTN either over DSRC or via the LTE network if the other HTN is not in the transmission range of DSRC.

LTNs which are not registered with any HTNs, would fall back to using SAI over LTE network. Since the TCC and VSA are both located in a centralized LTE network, the forwarded message including the awareness range and transmission frequency would then be forwarded by the VSA to the respective receivers either via HTNs or directly via eNodeBs. The proposed message forwarding algorithm implemented on HTNs is shown in Algorithm 1.

3. System model

The network modeled is a 2×2 km2 area of Glasgow’s city center with varying density of vehicles evaluating both rush hours when there is high presence of HTNs and less busy hours with lesser HTNs available. Both LTNs and HTNs are assumed to be equipped with Frequency Division Duplex (FDD) LTE transceivers with 20 MHz bandwidth, uplink carrier frequency 1715 MHz and downlink carrier frequency 2115 MHz (band 4) [16, Table 5.5-1] integrated with IEEE 802.11p compliant DSRC interface operating at 5.9 GHz with 10 MHz bandwidth [17]. These nodes are assumed to be moving in urban model created using routes mobility model [18] on ns-3 [19]. Simulation parameters used are given in Table 2.

1. **Awareness Range** is the geographical area around the vehicle where all the neighbors are to be made cognizant of the vehicle.

Algorithm 1 HTN Message Forwarding Algorithm

Input: VSMs : LTN \rightarrow HTN

- R_i: Awareness Range of vehicle i
- BF_i: Beacon Frequency
- d_{ik}: Distance between vehicles i and k
- F_i: Forwarding Set containing all intended receivers for i

Output: VSMs : HTN \rightarrow LTN

System Setup:

1. HTN maintains routing table with TCC and VSA
2. while $HTN \rightarrow VSM_i$ do
3. TCC locates all vehicles
4. TCC \rightarrow HTN
5. $VSM_i \rightarrow (SAI_i, Position(d_{ik}))$
6. $SAI_i \rightarrow (R_i, BF_i)$
7. $(R_i, d_{ik}) \rightarrow Distance(d_{ik})$
8. $F_i = \{\forall k : d_{ik} < R_i, i \neq k\}$
9. $HTN \Rightarrow LTN \in F_i$ at BF_i
10. if LTN not registered with HTN then
11. Message forwarded to respective HTN
12. end if
13. end while
14. return F_i

3.1. Performance measures

We compare our results with the previously proposed frameworks implemented in [10] and [3]. The primary performance measures used are the End-to-end delay, DSRC coverage and the LTE Goodput. The end-to-end delay is the time a packet takes from the transmitting LTN to the receiving LTN either via registered HTN or the LTE network. DSRC coverage is the percentage of LTNs registered with HTN, classified as the traffic offloaded from the LTE network. Furthermore, the LTE Goodput is the number of useful information bits received at the application layer per unit time.

4. Simulation results

Safety related applications form a vital part of vehicular networks. They also have stringent requirements when it comes to latency and reliability. Standards specify that a critical latency
of less than 100 ms is required for successful implementation of vehicular networks [20], however, previous implementations have benchmarked their acquired latency at 50 ms [4]. In our proposed framework, LTNs carry out V2V and V2I communications via either HTNs or the LTE network, therefore, we evaluate the end-to-end latency experienced by every packet.

Fig. 2 shows the cumulative density function (CDF) for the end-to-end delay in our simulated Glasgow city center. Fig. 2(a) shows the comparison of our proposed MHA V framework with longest registration time algorithm (LRTA) [10] and cloud-assisted message dissemination scheme (CMDS) [3]. Probability of end-to-end delay being less than 50 ms for MHA V is 87% while for LRTA and CMDS its 40% and 30%, respectively. This significant increase in delay for LRTA is because of its fast changing topology in switching between HTNs. Whereas in CMDS it is due to the configuration time it requires to set up the cloud assistance. In the proposed MHA V, the dissemination technique used restricts communication within a certain awareness range according to the application requirements. This in return avoids capacity block due to message flooding both in DSRC and LTE, resulting in higher resources and eventually, lower delays.

Similarly, in Fig. 2(b), offloading of vehicular communications from LTE is evident. Implementation of MHA V with 100 and 200 LTNs in our simulation environment shows that the probability of delay being less than 50 ms increases from 44% to 93% for 100 LTNs and 22% to 82% for 200 LTNs. This is due to the fact that after MHA V implementation, evident from Fig. 3, 68% of LTNs now operate on DSRC via their registered HTNs enabling low latency direct communications while reducing the amount of traffic on LTE.

Fig. 3 shows how the LTE goodput decreases when the DSRC coverage increases. In MHA V framework, it is evident that increasing the number of HTNs from 10 to 30, increases the DSRC coverage area by 35%, eventually offloading 8 Mbps of traffic from LTE network. Therefore, it can be concluded that by having more transport operators or authorities involved, more number of HTNs are present thus reducing the amount of traffic on LTE and eventually enabling LTNs to communicate
with each other and the infrastructure via HTNs over DSRC instead of the LTE network.

5. Conclusion and future work

This paper proposes a multitier heterogeneous adaptive VANET framework and a message dissemination scheme. MHA V architecture consists of HTNs being authority owned or transport operator vehicles such as public buses, taxis, council lorries, etc. and LTNs being all the other privately owned vehicles. All the vehicles are assumed to have LTE and DSRC capabilities where LTNs register with HTNs to enable V2I and V2V communications over DSRC while the HTNs connect to the LTE network in order to provide infrastructure communications to its registered LTNs. A fall-back to a previously proposed LTE mechanism in the case where there is no HTN present for registration is also evaluated. Simulations are carried out in Glasgow city center which is a dense urban environment in order to evaluate the proposed framework. Results show that the proposed HTN message forwarding algorithm outperforms the traditional BUS VANET frameworks by 47% in terms of probability of end-to-end delay being less than 50 ms. This framework also offloads more than half of the vehicular traffic from cellular networks. Results also showed that by increasing number of HTNs, DSRC coverage increases while decreasing the amount of traffic on LTE network. Furthermore, having authority owned gateways tend to make the network more secured and also addresses the privacy issue raised by many private car owners.

In the future, we plan to evaluate other scenarios such as highways and suburban areas where some parameters in our algorithm are speculated to be significant for a robust network. We also plan on implementing proposed algorithms and techniques on LTE/DSRC compliant modems in order to further investigate and evaluate MHA V framework.

References

[20] Intelligent transport systems (ITS); basic set of applications; part1: functional requirements (Sep. 2010).