Improving the removal of phosphate in secondary effluent of domestic wastewater treatment plant
Ashekuzzaman, S.M.; Jiang, Jia-Qian

Published in:
CEST2017 Proceedings

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication in ResearchOnline

Citation for published version (Harvard):
Improving the Removal of Phosphate in Secondary Effluent of Domestic Wastewater Treatment Plant

Ashekuzzaman S.M. and Jiang J-Q.∗

School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, United Kingdom

∗corresponding author: Jia-Qian Jiang
e-mail: jiaqian.jiang@gcu.ac.uk

Abstract World widely, the excess loads of phosphorus (P) is one of the most common chemical contamination in freshwater bodies (e.g. lakes, rivers). It is one of major causes of eutrophication. In the UK, 80% of 98 surveyed rivers were found to exceed the accepted standard of healthy rivers’ P concentration, e.g. 0.1 mg/L. Effluents from wastewater treatment plant (WWTP) are considered to contribute up to 60–80% of the P in rivers due to discharge of treated effluents containing residual P concentrations of 1–2 mg/L. The discharge level of P from WWTPs in many countries is going to be strictly limited to 0.1 mg/L or even less due to the growing concern over eutrophication. Hence, the alternative technologies are sought to enhance the P removal efficiency from WWTPs. In this study, Ca and Mg incorporated layered double hydroxide (LDH) adsorbents were synthesized and assessed for phosphate removal from both P spiked synthetic solution and real effluent sample of WWTP. The results demonstrated that the effluent from WWTP’s secondary treatment process with P concentration of 1.4–5.6 mg/L can be treated by both types of LDH to meet future stringent discharge limit at the level of 0.1 mg/L.

Keywords: Phosphate removal, Wastewater treatment plant, Layered double hydroxide, Adsorption

1. Introduction

In recent decades, one of the most common chemical contaminants in freshwater bodies (e.g. lakes, rivers) worldwide is the excess loads of phosphorus [1], which enters water bodies through point sources (e.g. municipal wastewater treatment plants (WWTPs)) and diffuse sources (e.g. agricultural run-off) [2]. Excess phosphorus (P) in lakes, lagoons and rivers is one of major causes of eutrophication (known as the process to extensive growth of water plants, algae, and plankton). A minimal amount of phosphorus in water, even at bio-available P concentration for example >0.1 mg/L, with the availability of carbon and nitrogen at C:N:P molar ratio of 105:15:1 can cause substantial algae growth [3], and thereby, subsequent deterioration of water quality and ecological imbalance like depletion of oxygen (causing fish death), production of toxin from some harmful algal blooms, loss of aesthetic value or even loss of water resources can occur [4].

The cost of these kinds of damage due to eutrophication to the United Kingdom (UK) water industry is estimated at >£15 million annually [5]. The global surface water bodies such as rivers and streams, lakes and reservoirs, and estuaries are facing the risk of eutrophication. For example, the symptoms of eutrophication is likely in about 78% and 65% of the coastal areas of United States (U.S.) and European Union (EU), respectively, and the economic loss due to eutrophication of freshwaters have been estimated at $2.2 billion annually in the U.S. alone [2]. The EU considers that lakes with total P concentration <0.01 mg/L is not at risk of eutrophication, and rivers with total P concentration less than 0.01–0.07 mg/L is considered excellent waters [6]. However, in the UK, 80% of 98 surveyed rivers were found to exceed the accepted standard of healthy rivers’ background P concentration, e.g. 0.1 mg/L [7]. It has been predicted that eutrophication of surface water and coastal zones will be growing almost everywhere until 2030, with the number of lakes facing harmful algal blooms rising worldwide by 20% or more until 2050 [1]. Sewage treatment plants are considered to contribute up to 60–80% of the P in rivers due to discharge of treated effluents often containing residual P concentrations of 1–2 mg/L [8,9].

Due to the growing concern over eutrophication, the discharge level of P from WWTPs in many countries is going to be strictly limited to 0.1 mg/L or even less [9]. However, conventional treatment methods, including biological P removal and precipitation-sorption processes are not capable to reduce P concentrations below 0.1 mg/L in the final effluent due to thermodynamic and kinetic limitations [2]. Moreover, chemical precipitation involves with excessive sludge production, high operating costs, and problems of disposing P-rich sludge without further chemical treatment [10]. Hence, alternative technologies are sought to enhance the P removal efficiency from WWTPs.

The incorporation of adsorption based additional treatment step as a tertiary treatment method with the conventional process could be a prospective option to facilitate WWTPs to meet the future stringent P discharge limit. Moreover, there is an emerging demand to not only removing P from wastewater but also to recover it as secondary P resources (e.g. P-loaded minerals) considering the limited reserve of viable P minerals. Among the adsorbents considered, layered double hydroxide (LDH) has been taken into considerations for improving P removal to meet more stringent P discharge regulation. The aims of this study were thus to synthesize and examine two types of LDH; (a) the Ca incorporated and (b) the Mg incorporated, for the
removal and recovery of P using sorption-desorption processes.

2. Materials and method

2.1. Synthesis and chemistry of LDH

Both Ca and Mg type LDH compounds were prepared by the coprecipitation method adapting a procedure from [11] incorporating the most common trivalent (Al³⁺, Fe³⁺) metal pre-cursors at two drying temperatures (60 and 450°C). Herein, the molar ratio of divalent (e.g. Ca²⁺) to trivalent (e.g. Al³⁺) was 2:1 and the interlayer anions were selected as NO₃⁻ and Cl⁻. The final LDH products were Ca-based Ca-Al-NO₃, Ca-Fe-NO₃, Ca-Fe-Cl and Mg-based Mg-Al-NO₃, Mg-Fe-NO₃, Mg-Fe-Cl. In principle, LDH compounds consist of positively charged brucite-like (Mg(OH)₂)₂ sheets and negatively charged interlayer regions containing anions and water molecules. The positive charges generated from the isomorphous substitution of trivalent cations for divalent cations are balanced by interlayer anions that can be exchanged for other anions. Thus, LDHs possess good anion exchange property.

The structural patterns of the LDH samples were characterized by X-ray diffraction (XRD) analyses using a Siemens D5000 Diffractometer. The morphology of the LDH samples was examined by scanning electron microscopy (SEM, Carl Zeiss EVO50 XVP) equipped with energy dispersive X-ray (EDX) facility (Oxford Instruments X-Max, Resolution 129 eV).

The prepared materials showed the characteristic XRD patterns (e.g. sharp, symmetric, strong lines at low 2θ values and weaker, less symmetric lines at high 2θ values) of a typical LDH structure with easily recognizable Bragg reflections by typical planes of (003), (006), and (110) (Figure 1). The analysis of EDX spectrum confirmed the presence of major elements in the final product as used during LDH preparation and also, supported the P uptake and removal process (Table 1).

2.2. P removal study using LDH

Batch experiments were conducted to assess P removal by the prepared LDH compounds from both synthetic solution and effluent samples from a WWTP. The factors tested were LDH dose, contact time, pH effect and P concentration levels. Also, desorption of P and re-usability of LDH compound were assessed under batch study mode. A stock solution of NaH₂PO₄-H₂O dissolved in deionized water at 50 mg P/L was made up and the working synthetic solutions with desired P concentration were made from the stock. The pH of working solutions was adjusted manually to the required values with diluted NaOH or HCl solutions.

Domestic sewage effluent after secondary treatment process prior to discharge point to the river was collected from Shieldhall Waste Water Treatment Works (WWTW) at Glasgow, Scotland (UK) for treating with selected LDH. Samples were analysed for desired parameters in the same day of collection and kept in the refrigerator at 4°C for further experiments. These parameters were determined according to the standard methods for the examination of waters and wastewater [12]. The major water quality parameters in three collected samples were in the range as follows: pH = 6.8–7.3, turbidity (NTU) = 1–3, total suspended solids (TSS, mg/L) = 1.8–6.1, dissolved reactive P (DRP, mg/L) = 1.4–5.6, total N (TN, mg/L) = 3.7–8.8, COD (mg O₂/L) = 21–27.

The batch sorption study protocol was as follows: LDH compounds were mixed with 25 ml of phosphate solution ([P_o]=10 mg P/L, pH₀ = 7) in 50 mL screw top polypropylene conical tubes using rotary shaker, and subsequently, centrifuged, filtered and finally, residual P concentrations were measured by ascorbic acid method [12] using UV-Vis spectrophotometer at 880 nm. The results are presented as the average of duplicate trials, and the reproducibility of the results were varied within the standard deviation ≦±5%. The adsorption capacity (Q_e, mg/g) or quantity of P adsorbed by the sorptive media, and removal rate (R) of P were calculated from the following relations:

\[
Q_e = \frac{(C_0 - C_e) \cdot V}{m}, \quad R (%) = 100 \times \frac{C_0 - C_e}{C_0}
\]

where \(C_0\) is the initial concentration of the P (mg/L), \(C_e\) is the equilibrium or residual P concentration (mg/L), \(V\) is the

Figure 1 Powder XRD patterns of Mg type (Mg-Fe-Cl) LDH before (as-prepared) and after P removal.

Table 1 Composition of the Ca and Mg type LDHs before and after phosphate uptake.

<table>
<thead>
<tr>
<th>Element</th>
<th>Before sorption (%)</th>
<th>After sorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca or Mg</td>
<td>61.91</td>
<td>53.50</td>
</tr>
<tr>
<td>Fe</td>
<td>9.83</td>
<td>10.65</td>
</tr>
<tr>
<td>Cl</td>
<td>10.64</td>
<td>10.72</td>
</tr>
<tr>
<td>Na</td>
<td>2.60</td>
<td>0.85</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>7.10</td>
</tr>
<tr>
<td>Total (%)</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 Composition of the Ca and Mg type LDHs before and after phosphate uptake.
volume of the solution (L) and m is the mass of adsorbent (g).

To identify ion release from LDH products, the supernatant was collected and analysed for required ions concentration followed by 2 h shaking of LDH contained adsorbate solution with subsequent centrifugation. Then the released mass of each ion in the known volume of supernatant was calculated, and thus based on the mass of input LDH and each released ion, the percentage of each ion released from the LDH products was determined. The concentration of various ions (e.g. Ca\(^{2+}\), Mg\(^{2+}\), Fe\(^{3+}\), Al\(^{3+}\), Cl\(^{-}\), NO\(_3^−\)) in the aqueous phase was determined by RFID enabled HACH DR3900 spectrophotometer using respective calibrants supplied by HACH Lange, UK.

In sorption-desorption cycle, phosphate saturated LDH (P-LDH) was separated after sorption phase and subsequently, used for desorption phase using selected desorbing solution (4% NaOH) followed by centrifugation and washing. After desorption run, the resulting LDH solids were separated, washed by deionized water several times and then, regenerated by calcination at 450°C for 2 h. In this way, the selected LDHs were regenerated up to some appropriate cycles considering the consistency of sorption performance.

3. Results and Discussion

3.1. Factors associated with the P removal by LDH

P removal was significantly higher by Ca type LDHs (i.e. Ca-Al-NO\(_3^−\), Ca-Fe-NO\(_3^−\), Ca-Fe-Cl) than those of Mg type (i.e. Mg-Al-NO\(_3^−\), Mg-Fe-NO\(_3^−\), Mg-Fe-Cl) under the same operating conditions (e.g. at same dose) (Table 2). Where the P removal trend flattened out an optimal dose for each LDH was selected. Results showed that Ca type LDHs removed 98–99% of P at dose of 0.3 g/L from synthetic solution of 10 mg-P/L, whereas Mg type removed only up to 22%. In comparison to the optimal adsorbent dose of Ca-LDHs, Mg type e.g. Mg-Fe-Cl LDH was observed to require much higher optimal dose as 2 g/L to achieve about 99% removal of phosphate. The removal performance due to the incorporation of either Al or Fe as trivalent cation with either LDH type was insignificant as was the case for either intercalated anion of NO\(_3^−\) or Cl\(^{-}\). Also, LDHs synthesized at 450°C were not found to improve the sorption performance significantly than those synthesized at 60°C. These results have clearly demonstrated the influence and selection of Ca and Mg as pre-cursor metals in synthesizing LDH compounds for removing phosphate.

| Table 2 Removal of phosphate (%) from 10 mg-P/L synthetic solution by various Ca and Mg type LDHs (adsorbent dose = 0.3 g/L, pH = 7). |
|---|---|---|
| LDHs | LDHs synthesized at |
| | 60°C | 450°C |
| Ca-Al-NO\(_3^−\) | 99.1 ± 0.3 | 99.5 ± 0.0 |
| Ca-Fe-NO\(_3^−\) | 99.2 ± 0.3 | 99.0 ± 0.2 |
| Ca-Fe-Cl | 97.8 ± 0.4 | - - |
| Mg-Al-NO\(_3^−\) | 17.9 ± 4.4 | 2.6 ± 0.4 |
| Mg-Fe-NO\(_3^−\) | 14.3 ± 2.0 | 22.4 ± 2.0 |

The equilibrium time required for the adsorption of P was almost 2 h and the removal rate was about 98–99% by this time. No significant decrease of residual P concentration was observed with further increase in retention time after 2 h. So, all the further adsorption experiments were conducted at 2 h contact time. First-order and pseudo-second-order kinetic models were used to analyse the sorption kinetics and it was found that the sorption kinetics of phosphate on both LDH types were well governed by the pseudo second-order kinetic model, suggesting that chemisorption process (bond formation at LDH’s surface) was occurred for phosphate uptake.

The study on pH effect of adsorbate solution suggested that P adsorption for Ca type LDHs was almost steady (~98%) in the range of pH between 3.5–10.5, whereas for Mg type, it was at pH between 3–7.5. With further increase in pH up to 12.0, there was a steady decrease. This is in conformity with two facts: (i) higher pH causes increasing competition for adsorption sites between OH– groups and phosphate species (e.g. HPO\(_4^{2−}\) at pH >7.0), and ii) a higher pH can cause the adsorbent surface to carry more negative charges (e.g., when point of zero charge (pHpzc) of sorbents is less than solution pH) and thus would enhance repulsive interaction between the adsorbent surface and the anions in solution [13]. Moreover, the equilibrium pH was observed to be raised about 10.5 and 9.9 for an initial pH range of 3.5–10.5 and 3–7.5, respectively, for Ca type and Mg type LDHs, with no significant changes observed in the removal rate for such a wide initial pH range. So, these results indicate a strong buffering capacity of both LDHs, and suggest that LDHs of Mg type could be useful for phosphate removal in domestic WWTW (pH usually ranged between 6.8-7.2) without prior pH adjustment, while Ca type have greater applicability under different pH system.

The effect of initial phosphate concentration on its adsorption by selected LDH type was studied at optimum adsorbent dosage (0.3 g/L for Ca type and 2 g/L for Mg type). Generally, removal rate of phosphate decreased with the increase of initial concentration. The reason of such reduction in phosphate adsorption can be explained by the lack of available number of active sites that can accommodate increased phosphate species at fixed adsorbent dose. The adsorption data were fitted to the Langmuir and Freundlich isotherm model relationships and values of isotherm constants are shown in Table 3. The adsorption isotherms can be better predicted by the Langmuir model for both LDH types as observed from the greater correlation coefficients (R\(^2\)) to those in Freundlich fitting.

| Table 3 Isotherm model constants for phosphate adsorption on selective LDHs |
|---|---|
| Isotherm model | Ca and Mg type LDHs |
| Ca-Al-NO\(_3^−\) | Mg-Fe-Cl |
| Langmuir isotherm | \(\frac{1}{q_e} = \frac{1}{q_m} + \frac{1}{q_m} \times \frac{1}{C_e} \) |

SD = standard deviation (n = 3), * Data not available
The adsorption capacity of phosphate on Ca LDH is much higher than that on Mg LDH, e.g., the maximum adsorption capacity on Ca-Al-NO₃ is 66.7 mg-P/g, while on Mg-Fe-Cl is only 9.8 mg-P/g as per Langmuir model. The maximum P adsorption capacity by the LDHs also varied (e.g. between 4.3–140.7 mg-P/gLDH) from study to study due to various factors, such as the composition and properties of the LDHs used, the characteristics of co-existing anions in the solution studied and the experimental approaches used. In general, the removal performance of phosphate obtained in this study is higher than that of some commonly available adsorbents and also comparable to some of the relevant LDHs in the literature (Table 4). It can be observed that removal performance in terms of removal rate and sorption capacity is highly variable in relation to the use of adsorbent dose and adsorbate initial concentration.

Both Ca and Mg type LDHs were assessed for re-usability thorough sorption-desorption phase. It was found that P sorption efficiency of Ca LDH decreased significantly from 99% to about 30% when re-used after first regeneration. As a result, this was not considered for further cycles. On the other hand, repeated use of Mg type LDH showed comparatively consistent P removal up to 6 cycles of sorption-desorption study. In this case, the sorption capacity was decreased by 14% after 6 cycles of sorption run in comparison to that of pristine LDH (from about 5 to 4.3 mg-P/g of LDH).

The physicochemical features of Ca type LDHs revealed that these are instable in aqueous phase and cannot be reused followed by adsorption, desorption and regeneration cycles due to loss of layered structure after first sorption operation. For example, a mass loss of 32–53% was observed with Ca incorporated LDHs due to the occurrence of major ion release. In comparison, Mg incorporated LDHs showed the lowest ion release tendency. This might be related to the selection of divalent cations i.e. Ca, Mg in the composition of LDHs, because Ca-LDHs have tendency to be more dissolve in the liquid phase than LDHs synthesized with Mg as divalent precursor due to the higher solubility product of Ca(OH)₂ (Ksp= 5.02×10⁻¹³) than Mg(OH)₂ (Ksp= 5.61×10⁻₁²) [14]. The analysis of various ions in the supernatant after first adsorption-desorption cycle also confirmed that >50% of pristine Ca-LDH mass was lost during the process compared to only about 7% mass loss from Mg-LDH, indicating the better aqeous stability of the later type.

3.2. LDH application to treat secondary effluent

Real effluent (both undisturbed and spiked up to ~10 mg-P/L) from wastewater treatment works (WWTP) was used to study the P removal by Ca and Mg type LDHs (e.g. Ca-Al-NO₃ and Mg-Fe-Cl) and the results are shown in Figure 2. It is clearly evident that effluent with low-to-high P concentration can be treated successfully by both types of LDHs to meet the standard of discharge concentration, depending on the selection of suitable adsorbent dose. More than 90% removal of P was observed by Ca-LDH at 1.5 g/L dose from effluent with P concentration of 3.4–10.4 mg/L. In comparison to Ca type, Mg-LDH removed above 98% at adsorbent dose of 4 g/L from effluent with 5.6 mg-P/L. This indicates that at least 2-fold higher dose was required for Mg-LDH to attain the similar phosphate removal efficiency as that from the test solution. The presence of other parameters like total nitrogen (TN), color were also somewhat removed (about 30–60%) with increasing LDH dose above 2 g/L. This explains why comparatively higher dose of LDH could be required to achieve comparable P removal from real effluent with that from test solution containing only phosphate.

4. Conclusions

Ca and Mg incorporated LDHs were prepared and assessed for P sorption-desorption processes. Results demonstrated that both types of LDH can reduce P level down to 0.1 mg/L from synthetic solution of 10 mg-P/L at the adsorbent dose of 0.3 and 2 g/L, respectively. Also, both of these LDHs can remove

<table>
<thead>
<tr>
<th>q_e (mg/g)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.7</td>
<td>9.8</td>
</tr>
<tr>
<td>7.64</td>
<td>14.38</td>
</tr>
<tr>
<td>0.9972</td>
<td>0.9786</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>q_e (mg/g)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.7</td>
<td>9.8</td>
</tr>
<tr>
<td>7.64</td>
<td>14.38</td>
</tr>
<tr>
<td>0.9972</td>
<td>0.9786</td>
</tr>
</tbody>
</table>

Freundlich isotherm formula:

\[
\log q_e = \log K_f + \frac{1}{n} \log C_e
\]

where:

- \(q_e \): maximum adsorption capacity (mg/g),
- \(b \): adsorption equilibrium constant (L/mg),
- \(C_e \): equilibrium adsorbate concentration (mg/L),
- \(K_f \) and \(n \) are the Freundlich isotherm constants.
P is unaffected for the pH range between 3.5 and 7.5, which is suitable for treating secondary effluent of WWTP. The effluent from WWTP's secondary treatment process with P concentration of 1.4–5.6 mg/L can be treated by the prepared LDHs to meet future stringent discharge limit depending on the selection of suitable adsorbent dose. For example, Mg-Fe-CI removed above 98% at dose of 4 g/L from effluent with 5.6 mg-P/L and Ca-Al-NO3 removed about 96% at dose of 1 g/L from effluent containing 1.4 mg-P/L. These LDHs can be potentially applied for tertiary treatment step with the WWTP's conventional treatment process to further polishing P discharge level. These findings can be further capitalized to find out cheap raw materials for cost-effective synthesis, and to conduct pilot-scale assessment to estimate potential costs for practical application in WWTP as P discharge polishing process.

Acknowledgement

S.M. Ashekuzzaman was sponsored by the Glasgow Caledonian University’s research studentship in conducting this PhD project.

References

