Generalized Small-Signal Modelling of Dual Active Bridge DC/DC Converter

Osama M. Hebala1,2,*, Ahmed A. Aboushady3, Khaled H. Ahmed4, Sam Burgess1, Radhakrishna Prabhu1

1School of Engineering, Robert Gordon University, Aberdeen, UK
2Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt
3School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
4Department of Electronic & Electrical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, UK

*Corresponding author: o.m.a.m.hebala@rgu.ac.uk

Abstract — this paper presents a novel generalised approach of the small-signal modelling of dual active bridge (DAB) DC/DC converter. The adopted analysis is based on a per-unit fundamental frequency representation of the DAB. The outcome of the proposed modelling approach is a small signal, linearised, state-space DAB model; which is considered as a main building block for future control applications. The developed small signal DAB model includes all possible degrees of freedom affecting the performance of the DAB; this includes the voltage conversion ratio to allow the study of all DAB operation modes (i.e.: unity-gain and buck/boost modes.). Furthermore, since triple phase shift control (TPS) is used in this development work, the proposed model incorporates phase shift in addition to duty ratios. This feature allows for bridge voltage regulation, which is essential for efficient DAB operation in the case of buck/boost operation. Another key achievement is that the proposed small signal modelling methodology can be applied to any bidirectional DC-DC converter regardless of ratings, parameter values and number of ports. Extensive simulation is carried out to verify the proposed analysis.

Keywords—Dual active bridge (DAB), Triple phase shift (TPS).

I. INTRODUCTION

The dual active bridge (DAB) converter has attracted research among several bidirectional DC/DC converters [1]. This is due to features such as: high power density, high power handing capability, zero voltage switching (ZVS) characteristics, galvanic isolation in transformer based versions and the possibility of cascaded or modular configuration to enable higher power/higher voltage designs [2-5]. This is why investigative studies have been ongoing to analyse, control and improve the overall performance of the DAB converter [2-7]. Currently, there are challenges regarding DAB control. It has many nonlinear properties and the need to achieve multiple objectives – such as regulating power transfer and minimizing current stresses – is vital without compromising the level of control complexity and real time implementation [6,7]. This has resulted in the requirement to develop an accurate and simple small signal DAB model to facilitate controller design.

In the main there are three different small signal, DAB converter, modelling techniques reported in the literature. These are divided into: simplified averaged model, continuous-time model and discrete-time model [8]. The simplified averaged model is obtained from the input and output average currents as a function of the transformer ratio [9, 10]; where perturbation and linearization techniques are utilized to develop the small signal model [11]. Another variation of the average model approach presented in the literature incorporates conduction and transformer power losses [12].

In [13] a continuous-time averaged model is developed for the DAB converter, where the state variables are defined as DC and first order terms of capacitor voltage and transformer current. While in [14] the small-signal transfer functions are derived by employing state-space averaged over one half cycle. An accurate small-signal, discrete time, model developed for an automotive DAB converter is presented in [15]; however it does come with a high mathematical computation burden. Discrete-time modelling is also discussed in [16, 17].

Reviewing the aforementioned literature shows that an accurate, yet simple, small signal model taking into consideration the converter voltage conversion ratio, along with all possible inputs and outputs, is overlooked. The proposed modelling technique in this paper is: per-unit, simple and satisfies the need for incorporating all possible system inputs/outputs. It can be considered as a general, yet efficient, way to study power electronic systems given the following reasons:

- The proposed small signal model includes voltage conversion ratio K, where $K=\frac{V_{\text{dc2}}}{V_{\text{dc1}}}$; which allows for studying normal DAB operation (i.e.: unity gain/buck/boost.).
- The proposed small signal model includes the duty ratios (D_1, D_2) allowing for variable duty ratio of bridge voltages; which is essential for efficient DAB (buck/boost) operation.
The proposed modelling methodology is not system dependent and can be applied to any bidirectional DC-DC converter regardless of ratings, parameter values and number of ports. Therefore, it can be applied to a two port DC-DC converter, such as DAB [6,7,18], and a three port DC-DC converter, such as triple active bridge, TAB, [19, 20].

The model simplicity facilitates controller design without compromising accuracy.

In this paper the proposed modelling approach is presented and applied on a DAB converter as depicted in Fig.1(a). In this approach the converter is represented by its fundamental, frequency-based, DAB diagram as shown in Fig.1(b). The entire analysis used in this paper is based on a ‘transformer-less’ DAB: meaning the DAB is based on an AC inductor which is fundamentally the equivalent model of a transformer’s leakage inductance. Furthermore, the parasitic resistance of the inductor R_{ac} is also included in the analysis.

Fig. 1. DAB circuit diagram: (a) Square-wave based DAB, (b) Fundamental-frequency based DAB equivalent circuit.

The paper comprises 7 sections. Section 2 covers the fundamental frequency component of the DAB under TPS control accompanied by the related steady state analytical model. Section 3 presents the proposed small signal methodology and its application on a DAB converter. Afterwards, detailed simulation results are shown in section 4 to validate the developed small signal model. Finally, in section 5, summary conclusions are presented.

II. PER UNIT STEADY STATE ANALYSIS OF DAB

In this section, per unit steady state analysis of the DAB converter is presented. TPS control [6,18] is used in this paper, where the control parameters $(D_1, D_2$ and $D_3)$ are obtained using classical phase shifting of gate signals S_1-S_4 and Q_1-Q_4 such that $0 \leq D_1 \leq 1$, $0 \leq D_2 \leq 1$ and $-1 \leq D_3 \leq 1$ The ratios D_1 and D_2 represent the pulse width of the first and second bridge voltage waveform (v_{br1}) respectively. Ratio D_3 is the phase shift between positive going edge of v_{br1} and positive going edge of v_{br2}. The definition of TPS is depicted in Fig. 2, where the typical AC voltage/current waveforms of a DAB under TPS control are shown.

Fig.2. Examples of voltage and currents waveforms for TPS control: (a) Forward (+ve) power flow, and (b) Reverse (-ve) power flow.

The per unit steady state analysis is based on the fundamental frequency approximation [21]; the visual definition of which is presented in Fig. 3 while the equivalent, fundamental frequency-based, analytical representation of the DAB bridge voltages are stated in (1) and (2). The analysis is in per unit, where the base values are selected as: voltage $V_{base}=V_{dc1}$, impedance $Z_{base}=8f_L$, f is the switching frequency, a time of T_b (half period) and all derived expressions are a function of D_1, D_2, D_3 and K. A factor K is used to describe the voltage conversion ratio (or converter voltage gain), where $K=V_{dc2}/V_{dc1}$: here $K=1$ represents unity-gain mode and $K \neq 1$ represents buck/boost mode.

Fig. 3. Definition of phase shift control in fundamental frequency operation

$$v_{br1}(t) = v_{1\max} \sin \left(\omega t - \left(1 - D_1\right) \frac{\pi}{2}\right). \quad (1)$$

$$v_{br2}(t) = v_{2\max} \sin \left(\omega t - \left(1 - D_2\right) \frac{\pi}{2} - \delta\right). \quad (2)$$

Such that,

$$v_{1\max} = \frac{4}{\pi} \sin \left(\frac{D_1 \pi}{2}\right), \quad v_{2\max} = \frac{4}{\pi} \sin \left(\frac{D_2 \pi}{2}\right).$$

Where,

$$K = \frac{V_{dc2}}{V_{dc1}}$$

and

$$\delta = \pi(D_3 + \frac{D_2 - D_1}{2}).$$
III. MODELLING METHODOLOGY

The proposed modelling technique is presented in this section. The first step is to express the AC bridge voltages, V_{br1} and V_{br2}, as DC inputs. This is achieved by defining the electrical quantities (i.e.: bridge voltage and inductor current) in equivalent DC components (i.e.: orthogonal DQ components.) such that the DQ component is essentially equivalent to an AC quantity with magnitude and phase angle. The DQ components for DAB variables are defined in (3) and (4).

$$i_L = i_{L_D} + j i_{L_Q}.$$
$$v_{br_n} = v_{br_{nD}} + j v_{br_{nQ}},$$

$$v_{br_{nD}} = |v_n| \cos \theta_n,$$
$$v_{br_{nQ}} = |v_n| \sin \theta_n.$$

(3)

(4)

Where,

$$\theta_1 = (1 - D_1) \frac{\pi}{2}, \quad \theta_2 = (1 - D_2) \frac{\pi}{2} - \delta, \quad \delta = \pi (D_3 + \frac{D_2 - D_1}{2}) + \frac{\pi}{2},
\quad |v_1| = \frac{4}{\pi} \sin \left(\frac{D_2 \pi}{2}\right)$$
$$\quad |v_2| = \frac{4K}{\pi} \sin \left(\frac{D_2 \pi}{2}\right).$$

A key issue in developing the dynamic model is how to introduce the system dynamics, which is done using (5). Now two steps are required to develop the linear, state space, dynamic DQ model of DAB:

- Separate the bridge voltages, V_{br1} and V_{br2}, along with the inductor current (i_L), into DC components using (3) and (4).
- Add system dynamics using (5).

Applying these steps to (6) yields (7) as follows:

$$\frac{dv_L_D}{dt} = L \frac{di_{L_D}}{dt}, \quad \frac{dv_L_Q}{dt} = L \frac{di_{L_Q}}{dt}.$$

(5)

(6)

$$i_{L_D} = v_{br1} - v_{br2} R_{ac}/x_L,$$
$$i_{L_Q} = R_{ac} i_{L_D} + j L \frac{di_{L_D}}{dt} + j L \frac{di_{L_Q}}{dt} + v_{br1} X_L - v_{br2} X_L + L \frac{di_{L_D}}{dt}.$$

(7)

Now, by equating real terms and imaginary terms on both sides of (7) the below outcome is developed:

$$\frac{d}{dt}[i_{L_D} i_{L_Q}] = \begin{bmatrix} \frac{\pi}{L} \sin \left(\frac{D_2 \pi}{2}\right) \cos \left(\frac{\pi}{2} \left(1 - D_1\right)\right) \\ \frac{4}{\pi} \sin \left(\frac{D_2 \pi}{2}\right) \cos \left(\frac{\pi}{2} \left(1 - D_1\right)\right) \\ \frac{4}{\pi} \sin \left(\frac{D_2 \pi}{2}\right) \sin \left(\frac{\pi}{2} \left(1 - D_1\right)\right) \\ \frac{4}{\pi} \sin \left(\frac{D_2 \pi}{2}\right) \sin \left(\frac{\pi}{2} \left(1 - D_2\right) - \pi D_3\right) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

(13)

Since the actual inputs are the duty ratios (D_1, D_2) along with the phase shift (D_3), and actual outputs are the power of each bridge (P_{br1}, P_{br2}), along with the RMS current of the AC link ($i_{L_{RMS}}$), therefore actual inputs/outputs need to be mapped to DQ input/outputs, which is where the non-linearity starts to get introduced as shown in (13) and (14).

$$\frac{d}{dt} i_{L_D} = \frac{1}{L} (v_{br1} i_{L_D} - v_{br2} i_{L_Q} - R_{ac} i_{L_D} + X_L i_{L_Q}).$$

(8)

$$\frac{d}{dt} i_{L_Q} = \frac{1}{L} (v_{br1} i_{L_Q} - v_{br2} i_{L_Q} - R_{ac} i_{L_Q} - X_L i_{L_D}).$$

(9)

Further, using the standard state space form outlined by (10), a dynamic DQ-based model of the DAB can be arranged as defined by (11) and (12), where:

- i_{L_D} and i_{L_Q} are states,
- v_{br1}, v_{br2}, and v_{br2} are inputs, and
- i_{L_D} and i_{L_Q} are outputs.

$$\begin{bmatrix} \frac{d}{dt} i_{L_D} \\ \frac{d}{dt} i_{L_Q} \end{bmatrix} = \begin{bmatrix} \frac{\pi}{L} \sin \left(\frac{D_2 \pi}{2}\right) \cos \left(\frac{\pi}{2} \left(1 - D_1\right)\right) \\ \frac{4}{\pi} \sin \left(\frac{D_2 \pi}{2}\right) \cos \left(\frac{\pi}{2} \left(1 - D_2\right) - \pi D_3\right) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} i_{L_D} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} i_{L_Q} + \begin{bmatrix} v_{br1} \\ v_{br2} \end{bmatrix}.$$

(11)

(12)

The model represented by (10) and (11) includes the system dynamics in addition to the steady state response due to the sinusoidal waveform equivalent of the DQ voltage inputs. However this is a linear state-space DAB model, where it is assumed that the inputs are DQ voltages and the outputs are DQ currents. The main objective is to attain a state space model where the parameters of state space system are defined as follows:

- i_{L_D}, i_{L_Q} are states \bar{X},
- D_1, D_2, D_3 are inputs \bar{U}, and
- $P_{br1}, P_{br2}, i_{L_{RMS}}$ are outputs \bar{Y}.

(13)

(14)
Equations (13) and (14) represent the non-linear state-space DAB model where the DQ input/outputs are replaced by actual inputs/outputs.

The next step is to linearize the state-space model in (13) and (14) using a small-signal modelling technique around a steady state equilibrium point using Taylor series. The net outcome of this is the small-signal linearized state-space model outlined by (15).

\[
\frac{d}{dt} [\Delta x] = [A] [\Delta x] + [B] [\Delta u].
\]

\[
[\Delta y] = [C] [\Delta x] + [D] [\Delta u].
\]

(15)

Where,

\[
A = \frac{\partial f}{\partial x} |_{(x_o, u_o)}, B = \frac{\partial f}{\partial u} |_{(x_o, u_o)},
\]

\[
C = \frac{\partial g}{\partial x} |_{(x_o, u_o)}, D = \frac{\partial g}{\partial u} |_{(x_o, u_o)},
\]

\[
\Delta u = \begin{bmatrix}
\Delta D_1 \\
\Delta D_2 \\
\Delta D_3 \\
\end{bmatrix}, \quad \Delta y = \begin{bmatrix}
\Delta P_{br1} \\
\Delta P_{br2} \\
\Delta I_{L RMS}^2
\end{bmatrix}.
\]

The values of X_o and Y_o are calculated by setting the derivatives to zero in the non-linear equations (13) and (14) and solving for the steady state values of the states (i_{L1o} and i_{L2o}) at given inputs (D_1, D_2 & D_3) . The developed small-signal state space linearised model can be summarised as shown in Fig. 4.

![Fig. 4. Inputs & outputs of the small-signal linearised model of DAB.](image)

IV. VALIDATION OF THE DEVELOPED MODEL

Matlab-Simulink has been the main analytical software tool for validating the developed model given by the method illustrated in Fig. 5, based on (16) below.

\[
X = X_o + \Delta x.
\]

\[
U = U_o + \Delta u.
\]

\[
Y = Y_o + \Delta y.
\]

(16)

Where the following definitions apply:

- U_o is the input equilibrium operating points selected (D_{1o}, D_{2o}, D_{3o}).
- Δu is defined as perturbations from the equilibrium operating points (ΔD_1, ΔD_2, ΔD_3).
- X_o is defined as system states evaluated at equilibrium operating points U_o.
- Δx is defined as system states evaluated at perturbations from the equilibrium operating points Δu.
- Y_o is defined as the system’s outputs evaluated at the equilibrium operating conditions U_o and X_o.

- Δy is defined as the output of the linearised small-signal state space model (ΔP_{br1}, ΔP_{br2}, $\Delta I_{L RMS}^2$).

Simulations are carried out where perturbations of TPS parameters (D_1, D_2 & D_3) up to $\pm 0.05\%$ around an operating point are applied and the resultant plots are shown in Fig. 6 and 7 comparing the outputs from the developed proposed state-space linearised DAB model (Y_{model}) and the detailed DAB circuit (Y_{dab}) in (P_{br1}), (P_{br2}) and ($I_{L RMS}$).

![Fig. 5. Validation method of the small-signal state-space DAB model in simulation.](image)

Time domain simulations are carried out, as shown in Fig. 6 and 7, to show how the different state variables behave in the actual non-linear system (detailed switching converter) and how they behave from the proposed small-signal model. The simulation included perturbations with respect to two different test operating points:

- Test point 1 (see Fig.6): $U_o=[0.6, 0.9, -0.1]$ resulting in $X_o=[0.424, 0.668]$ and $Y_o=[0.121, 0.117, 0.5596]^T$, at $K=0.4$.

- Test point 2 (see Fig. 7): $U_o=[0.9, 0.5, 0.25]$ resulting in $X_o=[0.56, -0.509]$ and $Y_o=[0.082, 0.0811, 0.5354]^T$, at $K=0.8$.

The simulations were carried out with the DAB parameters described in Table I.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>PARAMETERS OF DAB IN SIMULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>value</td>
</tr>
<tr>
<td>Bridge 1 DC Voltage V_{dab1}</td>
<td>100V</td>
</tr>
<tr>
<td>Bridge 2 DC Voltage V_{dab2}</td>
<td>$K*100V$</td>
</tr>
<tr>
<td>Switching Frequency f_s</td>
<td>2.5kHz</td>
</tr>
<tr>
<td>Base Power P_{base}</td>
<td>500W</td>
</tr>
<tr>
<td>Interface inductor L</td>
<td>1mH</td>
</tr>
<tr>
<td>Parasitic resistance of the inductor R_{in}</td>
<td>0.05Ω</td>
</tr>
</tbody>
</table>

Fig. 6 and 7 show the steady state values of Y_o match the values calculated from the model Y_{model} in addition where a very small difference is noticed between the state-space linearised DAB model and the detailed DAB circuit such that $\%error < 2\%$; i.e.: $Y_{model} \approx Y_{dab}$. This verifies the correctness and reliability of the developed linearised, state-space, small-signal model and the adopted modeling technique.
V. CONCLUSION

This paper has presented and discussed a novel small signal modelling technique applied on a dual active bridge (DAB). The output is a small signal, linearised, state space model of a DAB converter. The key features of this model are: high accuracy, simplicity and consideration of all possible system inputs/outputs. The proposed modelling approach is also generic and can be applied to any bidirectional DC-DC converter regardless of ratings, parameter values and number of ports. The reliability of the proposed modelling technique is confirmed within the simulation results presented.

Fig 6. Comparative analysis of outputs from the proposed small-signal state-space DAB model (Y\textsubscript{model}) and outputs of the detailed DAB circuit (Y\textsubscript{dab}) at operating point $U_o = [0.6, 0.9, -0.1]$ for $K = 0.4$: (a) P_{br1}, (b) P_{br2} and (c) $i_{L RMS}$.

Fig 7. Comparative analysis of outputs from the proposed small-signal state-space DAB model (Y\textsubscript{model}) and outputs of the detailed DAB circuit (Y\textsubscript{dab}) at operating point $U_o = [0.9, 0.5, 0.25]$ for $K = 0.8$: (a) P_{br1}, (b) P_{br2} and (c) $i_{L RMS}$.

REFERENCES