The population-level impact of bivalent HPV vaccination on closely related non-vaccine types
Mesher, David; Pollock, Kevin; Kavanagh, Kimberly

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication in ResearchOnline

Citation for published version (Harvard):
Mesher, D, Pollock, K & Kavanagh, K 2018, 'The population-level impact of bivalent HPV vaccination on closely related non-vaccine types' HPV World, no. 74.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy for details of how to contact us.
The population-level impact of bivalent HPV vaccination on closely related non-vaccine types

Clinical trials of the both the bivalent and quadrivalent vaccine demonstrated a level of cross-protection against certain closely-related HPV types. However, a meta-analysis of clinical trial data from both vaccines suggested that the cross-protective efficacy against HPV31/33/45 infection and associated lesions was higher for the bivalent vaccine than the quadrivalent vaccine. Since 2006, several countries have introduced national HPV vaccination programmes but relatively few countries introduced a national programme which exclusively adopted bivalent vaccine. Results of surveillance considering the population-level impact of HPV vaccination provide additional information to the clinical trials for several reasons. Firstly, in a real world setting, there may be some inequalities in who is being vaccinated, and secondly, that with high national vaccine coverage there will be a herd protection effect. Real-world post-vaccination surveillance studies have demonstrated clear reductions in HPV16/18 infections in many countries. As expected, the changes in non-vaccine types, which are often rarer, have taken longer to emerge than the changes in vaccine types. However, surveillance data from countries with a high-coverage vaccination programme using the bivalent vaccine demonstrate substantial declines in some non-16/18 HPV types.

In Scotland, prevalence of HPV 31, 33 or 45 in those aged 20/21 attending for first cervical screening test declined from 14.2% in those born in 1988 (unvaccinated cohort) to 2.6% in those born in 1995 (Figure 1). All cross-protective types showed significant vaccine effectiveness in those vaccinated at age 12/13 (HPV type 31, 93.8%; HPV type 33, 79.1%; HPV type 45, 82.6%). Unvaccinated individuals born in 1995 had a reduced odds of HPV16/18 infection compared with those born in 1988 (adjusted odds ratio 0.13 [95% confidence interval (CI); 0.06–0.28]) and reduced odds of HPV types 31, 33, and 45 (odds ratio 0.45) indicative of herd protection in this cohort. Recent post-vaccination surveillance data from young women attending for chlamydia screening in England has also demonstrated a decline in the prevalence of HPV31/33/45 infection from 9.4% in females born in 1996-1998 (prior to vaccine introduction) to 1.4% in those born in 1998 (Figure 1). The estimated vaccine effectiveness against

David Mesher, PhD
david.mesher@phe.gov.uk

Kevin Pollock, PhD, MPH
Health Protection Scotland, Meridian Court, Glasgow, UK
George Moore Building, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK.
Kevin.pollock@nhs.net

Kimberley Kavanagh, PhD
Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK.
kim.kavanagh@strath.ac.uk

Quote this article as:
D Mesher, K Pollock, K Kavanagh (2018). The population-level impact of bivalent HPV vaccination on closely related non-vaccine types
www.HPVWorld.com, 74
Figure 1
Prevalence of human papillomavirus (HPV) infection by year of birth and country

HPV16 and/or HPV18

HPV31, HPV33 and/or HPV45

England

Scotland
HPV31/33/45 infection was 54.3% (95% CI; 8.6%-77.2%) for women who would have been offered vaccination at age 15 or younger.

Similar results of high vaccine-effectiveness have also been shown in other countries adopting the bivalent vaccine. For example, the results of a cohort study conducted in the Netherlands demonstrated a vaccine effectiveness against HPV 31, 33 and 45 persistent infections of 61.8% (95% CI; 16.7%-82.5%). On first glance, the declines seen in these countries appear inconsistent with the moderate cross-protective efficacy from the clinical trials. However, the results are consistent with theoretical findings from mathematical models which have suggested that herd protection could have a relatively greater impact on declines in types with a lower basic reproductive number, highlighting the importance of maintaining high vaccination coverage. In summary, the declines in the prevalence of HPV31/33/45 infection in England and Scotland since the introduction of national HPV vaccination have been substantial. Together with HPV16/18, these types are associated with around 90% of cervical cancers in the UK. Elimination of these clinically relevant, high-risk HPV types in the United Kingdom is a real possibility and these data should inform assessments of the cost-effectiveness of introducing the nonavalent vaccine to national vaccination programmes.

Mathematical models which have suggested that herd protection could have a relatively greater impact on declines in types with a lower basic reproductive number, highlighting the importance of maintaining high vaccination coverage

References:

